
APDM SDK
Developer Guide

©2016 APDM, Inc.,

March 22, 2016

Contents

Contents
1 Welcome 6

2 System Overview 7

2.1 Movement Monitors . 7

2.1.1 The Opal . 7

2.1.2 The Emerald . 8

2.1.3 The Sapphire . 8

2.2 Docking Station . 9

2.3 Access Point . 9

2.4 Recording Modes . 9

2.4.1 Robust Synchronized Streaming . 10

2.4.2 Rapid Synchronized Streaming . 10

2.4.3 Synchronized Logging . 10

2.4.4 Low Power Logging . 10

2.5 Motion Studio . 10

2.6 APDM Software Development Kit . 11

3 Downloading the SDK 12

3.1 SDK Directory Structure . 12

4 Software Tools and Libraries 13

4.1 Developer Skills . 13

4.2 Programming Libraries . 13

4.2.1 Development Environments . 14

4.3 C API . 15

4.3.1 Documentation . 15

4.3.2 Using the Host Libraries . 15

4.3.3 Headers . 15

4.3.4 System Context . 15

4.3.5 Docking Station Handle . 16

4.3.6 Configuration of Movement Monitors on a Docking Station 16

4.3.7 Access Point Handle . 16

4.3.8 Configuration of Synchronized Wireless Streaming & Logging Mode 16

4.3.9 Variable Output Rates . 17

4.3.10 Wireless Channel Selection . 17

4.3.11 Configuration of Rapid Streaming Mode . 18

4.3.12 Rapid Streaming with Correlation . 18

2

Contents

4.3.13 Rapid Streaming without Correlation . 18

4.3.14 Persisting Configurations to Disk . 19

4.3.15 Configuration of Synchronized Logging Mode . 19

4.3.16 Configuration of Low Power Logging Mode . 19

4.3.17 Storing streaming data in HDF5 or CSV format . 19

4.3.18 Converting .apdm files to HDF5 or CSV . 20

4.3.19 Return Codes . 20

4.3.20 Logging . 20

4.3.21 Threading . 20

4.4 Wireless Buffering and Data Correlation . 20

4.4.1 Max Delay / Max Latency . 21

4.5 Real-time Systems . 22

4.6 Timing and Protocol Properties . 23

4.7 DLL’s, DYLIB’s and SO’s . 24

4.7.1 Java . 24

4.7.2 Other Systems . 24

4.7.3 External Sync . 24

5 External Synchronization and I/O 26

5.1 Configuration . 27

5.2 Input Synchronization . 27

5.2.1 Input Trigger Shape . 27

5.2.2 Input Trigger Level . 27

5.2.3 Input Trigger . 28

5.2.4 Sample Selection with External Input Trigger Events 28

5.2.5 Annotation of Externally Triggered Recordings . 28

5.3 Output Synchronization . 28

5.3.1 Output Trigger Shape . 28

5.3.2 Output Trigger Level . 29

5.3.3 Output Trigger . 29

5.4 Isolated External Interface Details . 29

5.4.1 RCA Inter-AP Sync Connector . 30

5.4.2 6 Pin Digital Input/Output Connector . 30

5.4.3 External Sync Box . 32

5.4.4 4 Pin Analog Input/Output Connector . 34

5.4.5 Schematic . 34

6 Programming Examples 35

6.1 Example Code Provided with the SDK . 35

3

Contents

6.2 Simple Configuration and Streaming Example . 35

6.2.1 High Level Psuedocode . 35

6.2.2 C Programming Example . 36

6.2.3 Java Programming Example . 38

6.2.4 Matlab Programming Examples . 42

7 Working with HDF5 Files 43

7.1 HDFView . 43

7.2 Data Organization . 43

7.3 File Structure . 43

7.3.1 Versions 3 and 4 . 43

7.3.2 Version 3 . 45

7.3.3 Version 2 . 46

7.3.4 Version 1 . 47

7.4 Working with HDF 5 in MATLAB . 48

7.5 Examples . 49

7.6 Notes . 50

8 Calibration 51

8.1 File Format . 51

8.2 Data Format . 52

8.2.1 Calibration version 5 . 52

9 Firmware Updates 56

9.1 Automatic Firmware Updates . 56

9.2 Manual Firmware Updates . 56

9.2.1 Flash Default Firmware . 56

9.2.2 Flash Alternate Firmware . 56

9.2.3 Force Update . 57

10 Movement Monitor Reference 58

10.1 Charging . 58

10.2 Powering Down . 58

10.3 Data Storage . 58

10.4 Cleaning . 58

10.5 Storage . 59

10.6 Drivers . 59

10.7 Firmware Updates . 59

10.8 Technical Specifications . 59

4

Contents

10.9 LED Reference . 60

10.9.1 Status Codes and LED Colors/Patterns . 60

10.9.2 Movement Monitor LED Reference . 60

10.10Technical Drawing . 63

11 Access Point Reference 64

11.1 Drivers . 64

11.2 Firmware Updates . 64

11.3 Mounting and Placement . 64

11.4 Using Multiple Access Points . 64

11.4.1 Redundancy . 64

11.4.2 Streaming from more than 6 Opals . 64

11.5 LED Reference . 65

11.6 Mechanical and Electrical Specifications . 65

11.7 Technical Drawing . 66

12 Docking Station Reference 67

12.1 Drivers . 67

12.2 Power . 67

12.3 Mechanical and Electrical Specifications . 67

12.4 LED Reference . 68

12.5 Technical Drawing . 69

13 Technical Support 70

5

1 Welcome

1 Welcome
Welcome to the APDM movement monitoring system. The following documentation will guide you through

understanding the architecture of the system and how to use it as a developer. The core SDK documentation

will focus on the C language implementation utilizing a dynamically linked library. Other language bindings

such as Java will be documented as well. For the C language or any language binding not provided it

is assumed that the end user should know how to properly load the dynamically linked library and call its

functions using the correct calling convention. Most of the documentation will use a cross platform approach

with specific platform specific notes if needed. Example code will be provided for all included language

bindings to assist in getting the user up and running in the shortest period of time possible.

6

2 System Overview

2 System Overview
The APDM movement monitoring system allows the user to record data from multiple monitors; each inte-

grating a suite of sensors. The system can be configured in 3 recording modes allowing for a wide rage

of applications. Some movement monitors are limited to a subset of these modes allowing for a lower cost

solution. The modes of operation are robust synchronized streaming, rapid synchronized streaming, syn-

chronized logging, and low power logging. Regardless of the mode the movement monitor always will record

data to its local memory card which can be imported from the monitor for offline analysis.

2.1 Movement Monitors

Movement monitors are the key element of the system and combine a complement of sensors within a single

package. Sensors include a 3 axis accelerometer, a 3 axis gyro, a 3 axis magnetometer, and a temperature

sensor. The accelerometers can be configured in a high 6G mode, or a low 2G mode depending on the

target application. There are a number of options for securing the monitors on subjects using a selection of

straps.

2.1.1 The Opal

The Opal is APDM’s full featured movement monitor allowing for use of all 4 recording modes.

7

2 System Overview

The Opal movement monitor

2.1.2 The Emerald

The Emerald is an option that supports the synchronized and low power logging modes, but does not support

the streaming modes. These monitors are optimized for long duration recordings or recordings where it is

not desirable to have a computer at hand to collect streaming data.

2.1.3 The Sapphire

The Sapphire only supports the low power logging mode. This version of the movement monitor has no wire-

less capabilities and may be the optimal choice for RF sensitive environments or where a single movement

monitor is needed without synchronization.

The docking station, for charging, configuring, and downloading data from your movement monitors

8

2 System Overview

2.2 Docking Station

The docking station is used to configure, charge, and download data from the movement monitors.

2.3 Access Point

The wireless access control point (access point for short) allows for wireless communication between the

host computer and Opal movement monitors, as well as synchronization with external 3rd party hardware. A

single access point can support up to 6 Opals. If you wish to stream from more than 6 synchronized Opals

at the same time, you will have to use more than 1 access point and connect them with an RCA (standard

stereo) cable.

The access point, for communicating wirelessly with your movement monitors

2.4 Recording Modes

To suit a range of different recording requirements, a number of different recording modes are possible.

Some monitor types do not support all recording modes.

9

2 System Overview

2.4.1 Robust Synchronized Streaming

In the robust synchronized streaming mode, you can stream data from multiple, synchronized monitors di-

rectly to your computer. Data is buffered on the monitors, so no data is lost even if there are interruptions in

the wireless signal. Only the Opals can be used in this mode.

2.4.2 Rapid Synchronized Streaming

The rapid synchronized streaming mode is similar to the robust synchronized streaming mode, except data

is not buffered on the monitors in order to minimize the latency of the streaming data. Latency on Linux and

Mac OS is typically in the range of 8ms to 25ms, while latency on Windows is typically in the range of 10ms

to 75ms. This recording mode is appropriate for biofeedback applications. In the event of interruptions in the

wireless signal, data will be dropped from the steram. Only the Opals can be used in this mode.

2.4.3 Synchronized Logging

In the synchronized logging mode, monitors log recorded data to their on-board flash memory. The monitors

are synchronized wirelessly with each other while recording, so the individual logs can easily be synchronized

with each other after the data has been imported from your monitor(s). In this mode, up to 24 monitors can

be synchronized within a single “mesh”. Only Emeralds and Opals are able to use this mode.

2.4.4 Low Power Logging

All movement monitor products (Opals, Emeralds, and Sapphires) are able to operate in the low power

logging mode. In this mode, the monitors’ wireless radios are disabled, decreasing the power required for

operation and enabling the monitors to run for longer periods of time. Since the mode does not use any

wireless synchronization, each movement monitor will collect data independently and potentially at slightly

different rates due to clock drift.

2.5 Motion Studio

Motion Studio is the default software suite bundled with the APDM movement monitor system. It provides an

easy way to get up and running collecting data with your movement monitors.

10

2 System Overview

2.6 APDM Software Development Kit

The APDM Software Development Kit (SDK) provides programming tools for software developers. These

tools enable developers to write their own software capable of configuring and streaming data from the

movement monitors. In addition, it also provides functions for converting the raw data files found on the

monitor’s memory card into either a HDF5 (recommended) format or CSV. The SDK provides the same low

level interface to the hardware that Motion Studio is built upon.

11

3 Downloading the SDK

3 Downloading the SDK
To obtain the latest version of the SDK, download the following archive:

http://share.apdm.com/libraries/apdm_sdk.zip

and unzip it to your desired location.

3.1 SDK Directory Structure

The SDK contains a number of folders useful to the developer. Their descriptions are as follows:

/doc Documentation for users, developers guide and API references.

/include Header files to be included in C or C++ applications.

/libs Libraries (DLL’s, SO’s, DYLIBS’s) to be dynamicly loaded into applications providing progra-

matic access to the hardware.

/samples Sample applications in C, Java and MatLab utilizing the libraries.

/Java Java APIs for programatic access to hardware

/matlab Matlab prototypes allowing for access to DLL’s, SO’s or DYLIBS’s

12

http://share.apdm.com/libraries/apdm_sdk.zip

4 Software Tools and Libraries

4 Software Tools and Libraries

4.1 Developer Skills

Use of the SDK will require some basic development skills:

• Loading, using, and unloading dynamic libraries (DLL’s, SO’s, DYLIB’s).

• Proficency in the target language or development enviroment.

• General understanding of error handling strategies, in particular, return error codes and/or exceptions

in languages that support exceptions.

• General understanding of memory management (allocation, deallocation).

• General understanding of API useage (initialization, usage, teardown).

• General understanding of the differences between bandwidth and latency as it relates to sampled data.

4.2 Programming Libraries

APDM provides programming libraries to allow integration on a variety of operating systems and platforms.

The following operating systems and versions are supported.

13

4 Software Tools and Libraries

Language Supported Operating Systems Comments

C/C++ Windows 8, 64bit

Windows 7, 64bit Unofficial Windows 7, 32bit

Windows Vista, 64bit Unofficial Windows Vista, 32bit

Windows XP, 32bit, SP2/SP3

Mac OSX 10.5 or later

Linux, 32bit

Linux, 64bit

Java Windows 8, 64bit JNI Bindings

Windows 7, 64bit

Windows Vista 64bit

Windows XP, 32bit

Mac OSX 10.6 or later

Linux, 32bit

Linux, 64bit

Matlab Windows 32bit Library Loading with C calls

Windows 64bit

Mac OSX 10.6, Snow Leopard or later

Linux, 32bit

Linux, 64bit

Python Linux, 32bit Python 2.5 and 2.6 bindings pro-

vided

Linux, 64bit

Other * Any enviroment that supports

loading of DLL’s, SO’s, or DYLIBS

and allows calls to functions on

those libraries. Development en-

viroments, 3rd party applicatcions

such as LabView and many other

tools allow for this method of inte-

gration. See your tools’ manual for

details on how to do this.

4.2.1 Development Environments

Dynamic libraries are provided, DLL’s, DYLIB’s and SO’s for linking into applications. Any language or envior-

ment that can load dynamic libraries and call into said libraries should be useable with the dynamic libraries.

Most languages/development enviroments support this functionality.
14

4 Software Tools and Libraries

• Windows / Visual Studio 2005 / MinGW / GCC

• Mac OSX / GCC

• Linux / GCC

4.3 C API

4.3.1 Documentation

Included in the APDM software distribution is function API documentation, including descriptions of functions

purpose, parameters and return values. This can be found under “docs” in the software distribution.

4.3.2 Using the Host Libraries

The host libraries allow you to create handles to any given access point or docking station attached to the

system. With an AP handle or docking station handle, you can query the given device for information, and

send configuration commands to the given device. If there is an movement monitor attached to a docking

station, then you can also send commands to the movement monitor thru the docking station handle.

4.3.3 Headers

Two headers will be necessary to include in your project, apdm.h and apdm_types.h.

4.3.4 System Context

The host libraries provide the notion of a system context. A context is a logical collection of access points

and docking stations (movement monitors attached therein) that can be configured as a group and work

in concert with each other. The context allows you to correctly configure wireless channels and redundant

wireless streaming AP’s, as well as provide correlation of the samples sent out by all the sensors (correlation

in time by sync value).

The data type used for a context is: apdm_ctx_t

and can be allocated with the apdm_ctx_allocate_new_context() function, and freed with the

apdm_ctx_free_context() function .

15

4 Software Tools and Libraries

4.3.5 Docking Station Handle

The data type used for a docking station handle is: apdm_device_handle_t

The easiest way to create a handle is to use the apdm_sensor_allocate_and_open() function, pass-

ing in the index of the given docking station number that you want a handle on. Similarly, calling the

apdm_sensor_close_and_free_handle() function to cleanly close the handle and free it’s respective mem-

ory.

4.3.6 Configuration of Movement Monitors on a Docking Station

The host libraries contain a number of functions, starting with apdm_sensor_cmd_XXXX() that are used to

configure movement monitors. Settings such as sampling rates, enabling and disabling different sensors,

configuration of wireless parameters etc can be done using thees function calls. See low level API documen-

tation for details on these commands.

4.3.7 Access Point Handle

The data type used for an access point handle is: apdm_ap_handle_t

An AP handle can be allocated with the apdm_allocate_ap_handle() function, freed with the

apdm_free_ap_handle() function. Once a handle is allocated, you can open a given access point by index

using the apdm_ap_connect() function. Once you’ve connected, you can then send commands to the AP

and query the AP for information using AP specific functions.

Access Point specific functions are of the form with apdm_ap_XXXX().

4.3.8 Configuration of Synchronized Wireless Streaming & Logging Mode

The host libraries provide a function apdm_autoconfigure_devices_and_accesspoint4() that can be

used to configure a group of AP’s and movement monitors for streaming mode. After a context has been al-

located and initialized, and the apdm_ctx_open_all_access_points() function has been called with the re-

spective context, you can call auto configure to configure the system. Once the system is configured, you can

disconnect the movement monitors from the docking station to allow them to stream data, and begin to use

the apdm_ctx_get_next_access_point_record_list() and apdm_ctx_extract_data_by_device_id()

functions to stream data.

16

4 Software Tools and Libraries

The maximum number of movement monitors in a single configuration is 36

The maximum number of access points in a single configuration is 6

4.3.9 Variable Output Rates

Movement monitors can be configured to generated samples at a configureable rate. Movement monitors

can sample at 20, 32, 40, 64, 80 and 128 Hz. For each given output rate, there are specific decimation rates

that are valid. The table below indicates which combinations can be used.

Output Rate / Decimate 1x1 2x1 2x2 5x1 4x2 5x2 4x4 5x4 8x4 8x5 8x8

20 valid valid valid valid valid valid

32 valid valid valid valid valid valid valid valid

40 valid valid valid valid valid valid

64 valid valid valid valid valid valid

80 valid valid valid valid valid

128 valid valid valid valid

You can set the sampling rate and decimation rate on a movement monitor using the

apdm_sensor_cmd_config_set() function. Detailed documentation is provided in the API docs for the

function. The decimation rate can be changed in wireless streaming mode by pre-configuring the movement

monitors using the desired configurations, and calling the

apdm_autoconfigure_devices_and_accesspoint_wireless() function. Details are provided in the re-

spective API documentation for the function.

4.3.10 Wireless Channel Selection

Movement monitors transmit data in the 2.4ghz wireless spectrum range. Channel zero corresponds to

roughly 2.4000ghz, and channel 90 corresponds to roughly 2.4900ghz. The 2.4ghz spectrum has many

other consumer electronic devices, such as WiFi routers, cordless phones and blue-tooth devices, that also

operate in this area of the spectrum. As such, it’s important to choose a channel that is not already in use by

another device.

The most common source of interference is from wireless network access points. You can determine the

channel that the WiFi router is running on and determine its corresponding frequency from the following

URL: http://en.wikipedia.org/wiki/IEEE_802.11

17

http://en.wikipedia.org/wiki/IEEE_802.11

4 Software Tools and Libraries

4.3.11 Configuration of Rapid Streaming Mode

You can find sample code for configuring rapid mode streaming in autoconfigure_rapid_streaming.cin

the samples directory of the SDK.

Configuration of rapid streaming mode is almost identical to that of normal streaming mode, with the excep-

tion of two settings that must be set to specific values.

To configure rapid streaming mode, call the apdm_ctx_autoconfigure_devices_and_accesspoint5()

function, making sure to set ‘decimation_rate’ to ‘APDM_DECIMATE_1x1’ , and ‘enable_sd_card’ to

‘false’.

There are two variants of rapid streaming mode. The first uses the correlation code provided by APDM, which

will emit sets of correlated samples, and deal with duplicate transmissions or cases where opals switch from

one AP to a second. From the perspective of the application, this will be identical to other normal modes

of streaming. The second mode, which will remove some additional latency (on the order of 5ms to 10ms),

retrieves individual samples as soon as they are available on the AP. However, in this mode of operation, the

application will have to deal with duplicate samples and gaps in the data if transient wireless/RF problems

occur.

4.3.12 Rapid Streaming with Correlation

This mode of operation is identical to normal streaming mode, with the exception of configuring the system

to disable the SD card and to set the decimation rate to ‘APDM-DECIMATE_1x1’.

4.3.13 Rapid Streaming without Correlation

This mode of operation requires slightly different library interfacing function calls. Example code can be

found in stream_data_rapid.c in the samples directory of the SDK. The basic function call sequence is as

follows:

apdm_ctx_allocate_new_context()

apdm_ctx_open_all_access_points()

apdm_ctx_flush_ap_fifos()

apdm_ctx_extract_next_sample() (called many times)

apdm_ctx_disconnect(context)

apdm_ctx_free_context(context)

18

4 Software Tools and Libraries

4.3.14 Persisting Configurations to Disk

When streaming, after auto configuration, the configuration of the AP’s and all the Opals can be persisted to

disk, such that at a later time (after restarting a system for example), the configuration can be re-read from

disk, re-applied to the AP’s, and streaming can be started again without having to go thru autoconfiguration.

The apdm_ctx_persist_context_to_disk() function and the apdm_ctx_restore_context_from_disk()

functions allow you to do this. An example of auto configuration with persisting to disk can be found in

autoconfigure_system.c in the examples directory of the SDK. An example of streaming data utilizing a

persisted context can be found in stream_data_recover_context.c in the examples directory of the SDK.

4.3.15 Configuration of Synchronized Logging Mode

The host libraries provide a function, apdm_autoconfigure_mesh_sync()that will allow you to configure all

movement monitors attached to the host in mesh time synchronization and data logging mode.

In synchronized logging mode, the movement monitors will transmit and receive their current time values, to

and from each other such that their internal clocks all maintain the same notion of time.

There can be a maximum of 24 devices used in synchronized logging mode.

4.3.16 Configuration of Low Power Logging Mode

Low power logging mode consists of enabling/disabling the sensors of interest on the movement monitor, and

disabling wireless. Wireless can be disabled with a call to apdm_sensor_cmd_config_set() and passing in

CONFIG_ENABLE_WIRELESS and a value of 0.

4.3.17 Storing streaming data in HDF5 or CSV format

In addition to streaming data into an application, functionality exists to stream data to a .h5 file or a .csv file.

The basic process is as follows:

1. Create a file with apdm_create_file_hdf() or apdm_create_file_csv().

2. Get the device info structure for each device that’s streaming using the

apdm_sensor_populate_device_info() function.

3. Pass an array of records and device info structures to the apdm_write_record_hdf() or

apdm_write_record_csv() function for each new sample.

4. Close the data file with apdm_close_file_hdf() or apdm_close_file_csv() when done.

19

4 Software Tools and Libraries

4.3.18 Converting .apdm files to HDF5 or CSV

Data stored on the movement monitor is in a binary .apdm format. APDM libraries provide functionality

to convert this data to a more usable format, apply calibration to the raw data, and generate orientation

estimates. apdm_process_raw() is used to convert .apdm files to HDF5 or CSV. Raw data can also be

optionally stored in the output format. To convert a raw data, first locate the .apdm files you wish to convert

in the filesystem. Only one .apdm file for each monitor can be converted, but files from multiple monitors

can be combined into a single output file. Files will appear in the filesystem of the host operating system

while docked as removable storage drives with names corresponding. Then call apdm_convert_raw()with

an array of the .apdm filenames. You can specify the output file and output file format. Calibration files do

not need to be specified. Calibration data is stored in the raw .apdm files and will be used in the conversion

process.

4.3.19 Return Codes

Most library functions return a value of type int, which has a value from enumAPDM_Status (defined in

apdm_types.h), which indicates success or failure code of the given function that was called. A convenience

function, apdm_strerror() is provided for converting these error codes to strings if necessary. Refer to

function specific documentation for the details of each function.

4.3.20 Logging

The APDM libraries have logging information that is generated at various points of it’s internal processing.

Each log event that occurs has a specified severity, all logging funnels through a single piece of common

infrastructure. By default, log messages are sent to STDOUT, but by calling apdm_set_log_file() you can

re-direct logging output to a file.

4.3.21 Threading

The APDM host libraries are not thread safe. Thread safety, synchronization and enforcement of mutual

exclusion are left up to the application in which the libraries are to be used.

4.4 Wireless Buffering and Data Correlation

In wireless streaming mode, the system utilizes numerous levels of buffering, including on-device buffering,

in access point buffering, and buffering in the host libraries. There are many reasons that this buffing is

necessary, including temporary wireless issues, scenarios where the host application does not retrieve data

20

4 Software Tools and Libraries

from the access point and times when the application wants to wait a short amount of time for a movement

monitor to retransmit data after the wireless issues pass.

Due to the hardware level properties of the system, it becomes necessary to process data from sensors and

access points knowing about potential transient problems at the hardware level. Some of the issues include

the following:

• Duplicate data transmission by a sensor to one or more access points in the event that the sensor does

not receive the ACK from the access point

• Variable delay in the relative streams of data from the movement sensors. e.g. one sensor may be

transmitting data that is older then then the other sensors while it is catching up from a transient wireless

problem.

• Missing data from a sensor, in the event that the sensor is turned off, or goes out of range for an

extended period of time.

By in large, when the system context is used for streaming data, it will resolve these issues prior to emitting

data from the libraries. There are some configuration parameters that will affect the behavior of the libraries

with regard to timing and potentially missing data.

apdm_ctx_sync_record_list_head()

Before the application begins to received data, it should call the apdm_ctx_sync_record_list_head()

function. This will cause the host libraries and access point to clear out all it’s buffers, stream in a few

samples such that a subsequent call to apdm_ctx_get_next_access_point_record_list() will return a

full sample set, with data from all sensors in the system.

If this function is not called, you may get old data, or partial sets of data from a call to

apdm_ctx_get_next_access_point_record_list()

4.4.1 Max Delay / Max Latency

During auto configuration, and via library calls to apdm_ctx_set_max_sample_delay_seconds() you can

specify the maximum amount of time to wait for sample(s) to be re-transmitted from an movement sensor.

This setting has some important implications with regards to data reliability and the latency of data by the

time it’s received by the user application.

• If a movement monitor is unable to transmit samples to an access point, the host libraries will stall their

21

4 Software Tools and Libraries

data output, waiting until max-latency seconds elapse, before giving up and emitting a partial sample

set. E.G. If there are 6 sensors configured, and one of them is unable to transmit, the libraries will emit

5 samples, and indicate that they have missed the 6th sample.

• For as long as the given sensor is having problems transmitting, the host libraries will continue to delay

outputting of data until the max-latency threshold for data age has elapses. So, if you have max-latency

set to 15 seconds, and a sensor goes out of range, you’ll find an initial pause of 15 seconds while the

max-latency period elapses, then you will continue to receive data from the libraries, but as long as the

sensor cannot transmit, the data will be 15 seconds old.

• The default max-latency setting is 15 seconds

4.5 Real-time Systems

The phrase ”realtime” is a context sensitive phrase, which according to Wikipedia has a few dozen meanings

depending on when and where it’s used (http://en.wikipedia.org/wiki/Real-time). As it applies to

data streaming and possible uses of opals, there are two classes that will need to be distinguished.

1. The computer science definition, where real-time refers to a system that has hard timing deadlines,

which if not meet, will cause the system to behave in an undesirable manor or fail outright.

(see http://en.wikipedia.org/wiki/Real-time_computing)

2. The end-user description, which often means ”really fast”, or ”fast enough that a human cannot notice

the latency”. In this context, the consequences of not satisfying the timing requirements are no more

then an annoyance to the end user. This is often the case with strip-charting of data, or on screen visual

feedback to a user.

The engineering techniques used to solve the two classes of problems above are significantly different.

In the case of an end-user real-time system, it’s fairly simple. Almost all mainstream operating systems and

hardware are capable of operating fast enough, and with low enough latency, to satisfy what a human can

notice with timing.

In the case of a hard real time system, it requires an operating system or embedded system that is capable

of providing timing guarantees. This is not a normal operating system such as Windows or Mac OS. With

the appropriate configuration, Linux can provide real-time functionality. There are many real-time operating

systems in existence

(see http://en.wikipedia.org/wiki/List_of_real-time_operating_systems). With respect to sup-

ported operating systems, Linux is the only operating system, also supporting real-time features, that can

be used with APDM hardware. If your intention is to use opals as sensor data to control something in

real time, you will likely find the subject of ”closed loop feedback control systems” to be useful (http:

//en.wikipedia.org/wiki/Control_theory).
22

http://en.wikipedia.org/wiki/Real-time
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/List_of_real-time_operating_systems
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Control_theory

4 Software Tools and Libraries

4.6 Timing and Protocol Properties

If APDM hardware is to be used in a hard real-time system, the developer must understand exactly what

timing properties are provided by the APDM software/hardware stack.

1. The USB bus was not intended to be used in hard real time systems. However, depending on the

requirements of the problem at hand, the USB bus may be good enough if the limitations of the bus are

taken into account in the application.

2. Transfers between the host and the access point are done via USB bulk transfers. Bulk transfers

provided guaranteed delivery, but not guaranteed timing. In general, on a Linux machine, it takes 1ms

to 2ms to do a transfer from the AP to the host computer. This 1ms to 2ms is not guaranteed however,

due to the underlying properties of USB bulk transfers. There are some things that can be done to

increase the probability of transfers falling into this latency range, such as making sure that each AP is

on it’s own root hub of the host.

3. The issue of late data, or missing data all together, is not limited to USB. In fact, almost all buses

can have some scenario in which data will be late and/or not get to the recipient. In buses that are

designed for critical controls, this tends to be due to hardware failures (electrical problem on the bus,

broken wires, bad bus transceiver etc). In all cases, the application should handle this in a manor that

is reasonable and appropriate for the problem at hand.

4. The opals are transmitting data in the 2.40-2.49 GHz wireless spectrum. There are many devices that

operate in this frequency range that can cause interference and problems during data transmission. If

this occurs, the opal has logic to retry the transmission of the sample a certain number of times before

giving up. In the event that it gives up, the host application will see a gap in the data (e.g. a missing

sample). The application should handle this in a manor that is reasonable and appropriate for the

problem at hand.

5. Sometimes the system will be running in a marginal wireless environment, or will encounter RF asym-

metries during the TX/RX process. This can have an effect of an opal successfully transmitting data

to the AP, and the opal not receiving the ACK from the AP. In this scenario, the opal will think that the

sample didn’t get through to the AP, and re-transmit the sample. Usually, the second time, the ACK

will be RX’ed by the opal. From the perspective of the host application however, this will manifest as a

duplicate sample (based on the 64bit synchronization value in the sample). Again, the application will

need to handle this in an appropriate manor for the problem at hand.

6. The opals use time division multiplexing when transmitting data to the AP’s. During a given opals time

slice, the opal has multiple opportunities to transmit data. When looking at the latency of samples as

they come in, you may observe burstiness in the latencies, in the range of 10ms differences in latency

values as they come in from the AP.

23

4 Software Tools and Libraries

4.7 DLL’s, DYLIB’s and SO’s

Depending on platform, a DLL, DYLIB or SO will be linked in with your application at run time. These library

files provide access to all the functions necessary to configure and communicate with movement monitors,

docking stations and access points.

These libraries are written in C and provide standard C-symbols so as to facilitate linking with as many other

languages, systems and platforms as possible.

Common ways of getting the dynamic library to load include, but are not limited to the following:

• compile time flags in your build system and making available the dynamic library for the system in one

of the standard library search paths

• a call to the LoadLibrary() function on Microsoft platforms

4.7.1 Java

Java language bindings are provided with the SDK. These provide an object oriented interface to access

points, docking stations, movement monitors and contexts. When using the Java bindings, you’ll need to

make sure the DLL/DYLIB/SO library file is in one of the library search paths. Environmental variables can

be set to achieve this or command line parameters can be passed into the JVM to indicate where it should

search for these libraries.

4.7.2 Other Systems

Many other systems, such as MatLab and LabView provide the ability to load 3rd party DLL’s and call func-

tions provided in those DLL’s. Please refer to the documentation provided by your application or system on

how to load and call functions from external libraries.

4.7.3 External Sync

The host libraries make available functions for manipulating and reading the I/O signals on each AP. The func-

tions are as follows: apdm_ap_get_io_value(), apdm_ap_set_io_value(), apdm_ctx_ap_get_io_value(),

apdm_ctx_ap_set_io_value().

Using these functions, you can read the current value from the digital input signal and the analog input signal,

and you can set the values for the digital output signal and the analog output signal. The apdm.h header file

contains documentation on the exact input and output parameters for the I/O functions listed.

24

4 Software Tools and Libraries

Changes to input pins on the access point can also be handled in an event oriented manor. The apdm_ctx_get_next_synchronization_event()function,

when called while streaming data, will populate a apdm_external_sync_data_tdata structure if an event

has occured on the AP.

25

5 External Synchronization and I/O

5 External Synchronization and I/O
The access point comes with external connectors that enable you to synchronize the recording of data in

Motion Studio with external equipment. This functionality only works when the system is configured in one of

the wireless streaming modes and the “Stream” dialog is open. The implementation is adaptable to a number

of scenarios. Here are some examples of things you can do:

• Trigger recording in Motion Studio when external events occur. You can use this functionality to precisely

synchronize your inertial recordings with, for example, recordings initiated on a camera based motion

capture system.

• Trigger external events when you start and stop recording in Motion Studio. You can use this func-

tionality to precisely synchronize your inertial recordings initiated in Motion Studio with, to use another

example, a video recording system.

• A combination of the two. For example, hitting the record button on a camera based motion capture

system could trigger recording in Motion Studio which could then trigger a video recording system.

The External Synchronization Configuration Dialog

26

5 External Synchronization and I/O

5.1 Configuration

Specification of external synchronization options is performed through the External Synchronization Con-

figuration dialog. If multiple access points are being used, synchronization options are specified for each

access point individually so that you can determine which ones are receiving external signals and/or sending

external signals. Each access point can have its input and output triggers specified individually. Input and

output triggers can also be disabled through the configuration dialog.

5.2 Input Synchronization

Input synchronization trigger types

5.2.1 Input Trigger Shape

The input trigger shape indicates the type of signal that will be input into the specified access point and

how you want Motion Studio to respond when using the “Stream” dialog. In the figure above, the four basic

trigger shapes are shown. The solid black line represents the external synchronization signal being sent to

the access point. The blue shaded region represents the period that will be recorded in Motion Studio. Input

triggers are only processed when the “External Sync” option is specified in the “Record Duration” panel of

the “Stream” dialog.

5.2.2 Input Trigger Level

Input triggers can be either low or high, depending on the nature of the signal generated by your external

synchronization source.

27

5 External Synchronization and I/O

5.2.3 Input Trigger

There are three input trigger options available:

• Start: The external trigger will only be used to start recording in Motion Studio.

• End: The external trigger will only be used to stop recording in Motion Studio.

• Both: The external trigger will be used to start and stop recording in Motion Studio.

5.2.4 Sample Selection with External Input Trigger Events

The time of the external input trigger events may not align exactly with the time of an individual samples being

collected in Motion Studio due to the discreet sampling interval. If the start trigger event time does happen

to align exactly with a sample captured in Motion Studio, the first sample recorded will correspond exactly

to the time of the start trigger event. If these do not align exactly (as will generally be the case) the sample

preceding the start trigger event will be the first sample recorded. Similarly, if the stop trigger event aligns

exactly with a sample captured in Motion Studio, the last sample recorded will correspond exactly to the time

of the stop trigger event. If these do not align exactly, the sample following the start trigger event will be the

last sample recorded. This way, we guarantee that the recording captured in Motion Studio fully spans the

time period between the external input start and stop events, but no more.

5.2.5 Annotation of Externally Triggered Recordings

Note: Annotations are implemented for the HDF file format only. When an external “Start” trigger event is

detected, an annotation is added to the recording that indicates the name of the event (in this case “External

trigger start time”) along with the timestamp of the event in epoch microseconds. Similarly, when an external

“Stop” trigger event is detected, a timestamped annotation is added to the recording (in this case labeled

as the “External trigger stop time”). These annotations allow you to align the recording captured in Motion

Studio with your external events in the case where the external trigger event times do not exactly align with

the samples captured in your HDF file.

5.3 Output Synchronization

5.3.1 Output Trigger Shape

The output trigger shape indicates the type of signal that will be generated by the specified access point

when recording is started and stopped through the streaming dialog in Motion Studio. The output trigger

shapes are identical to the input trigger shapes, but in this case the solid black line in the figure above

represents the signal being output by the configured access point. The blue shaded region represents the

28

5 External Synchronization and I/O

Output synchronization trigger types

period being recorded in Motion Studio, initiated either through user selection of the start/stop buttons in

the “Stream” dialog, use of the wireless remote, or an external synchronization event. Unlike input triggers,

output triggers are processed even if the “External Sync” option is not specified in the “Record Duration”

panel of the “Stream” dialog.

5.3.2 Output Trigger Level

Output triggers can be either low or high, depending on the requirements of the external system receiving

the synchronization signal.

5.3.3 Output Trigger

There are three output trigger options available:

• Start: The external signal will only be generated when recording is started in Motion Studio.

• End: The external signal will only be generated when recording is stopped in Motion Studio.

• Both: The external signal will be generated when recording is started and stopped in Motion Studio.

• Note: It is not recommended to use the level trigger shapes in conjunction with the start or end triggers.

This is because the output signal will be in an undeterministic state prior to the trigger event.

5.4 Isolated External Interface Details

APDM’s access points come fitted with a 6 pin digital I/O connector and a 4 pin analog I/O connector. To

connect an access point to your external equipment, you may have to create a custom cable that can interface

with both components. Below we provide the technical specifications necessary to complete this task. Feel

free to contact our technical support at support@apdm.com if you require assistance or have additional

questions.

29

5 External Synchronization and I/O

The Isolated External Interface for the AP consists of an auxiliary power supply, two GPIO lines (one in, one

out), and an inter-AP sync signal. All signals in the isolated external interface section (including power and

ground) are isolated from the remainder of the board using an RF solution similar in operation to an opto-

isolator. Further, all signals in the isolated external interface are 5V tolerant and ESD protected beyond the

15kV human body model.

The connectors used in the isolated interface consist of one standard female RCA, and one female 6 pin

mini-din connector. The RCA connector mates to almost any basic RCA cable similar to those used in audio

systems. When choosing an RCA mating connector, choose one that has uncovered bare shield spades to

allow the connector to fit fully into the recessed hollow in the AP body.

The 6 pin mini-din connector is similar to those used for older style PS/2 keyboards and mice. Choose a

connector that is small enough to fit fully inside the recessed hollow in the AP body. Some PS/2 extension

cables can be cut into excellent pigtails for this connector.

5.4.1 RCA Inter-AP Sync Connector

• RCA Connector: Digikey Part number RCP-021, CUI INC

• Center Pin: Inter-AP Sync

• Sheild: Isolated Ground

5.4.2 6 Pin Digital Input/Output Connector

• 6 Pin Mating Connector: Digikey part number CP-2060-ND, CUI Inc part number MD-60.

• 6 Pin Mating Pig Tail Cable: Digikey part number 839-1051-ND

• Note these connectors may need the outer shell trimmed to fit into the AP case, a better solution is

often pigtail cables that have over-molded ends and excellent strain relief.

AP 6 Pin Digital Connector

• Pin 1: Record In

30

5 External Synchronization and I/O

• Pin 2: Output Voltage Select. When connected to positive (pin 6), I/O will be in 5 volt mode. 3.3 volt

mode otherwise.

• Pin 3: Isolated Ground (isolated gnd)

• Pin 4: Inter-AP synchronization output signal. 2.56 khz square wave used for synchronizing timing

among multiple access points.

• Pin 5: Record Out

• Pin 6: Isolated Vdd, unregulated. 3.3 V or 5 V depending on whether it is connected to pin 2.

The auxiliary power supply is meant to provide for powered external interface solutions, allowing a small

circuit to be powered directly from the AP. Accessed via pin 6 of the mini-din connector, the auxiliary power

supply is rated for operation up to 250mW at 3.3V or 5V operation. While default operation is at 3.3V, 5V

operation can be selected by shorting pin 2 to pin 6 of the 6 pin mini-din connector.

The inter-AP sync signal is a 2.56kHz clock signal used to keep multiple AP configurations in sync with one

another. The inter-AP sync signal is available on the RCA connector, as well as pin 4 of the 6 pin mini-din

connector next to it. The signal is a square wave pulse that is driven by the ’master’ AP (usually the first AP

to enumerate) and received by up to seven additional APs (depending on output voltage selection and cable

length). In operation the signal is weakly pulled up to the isolated power rail by each AP in the system, and

driven directly to ground only by the ’master’ AP to produce the pulsed waveform.

Two GPIO lines are available, one input and one output. Both are pulled down by 47.5kΩ resistors, and

each have a series resistance of nearly 1.2kΩ due to the methods used to protect the lines from over-

voltage/overcurrent conditions. The input signal is available on pin 1 of the 6 pin mini-din connector and

is typically used to start/stop data collection by the host PC. Driving the line high to ’record’ and low to

’not-record’ is the default operation, though this is user selectable in software to allow for other modes of

operation. Similar to the input line, the output line is typically used to start/stop data capture on external

systems. The line is driven high by the AP when ’start recording’ is selected in software, and driven low when

recording stops. Opposite high/low operation can be software selected at time of configuration for both input

and output signals.

• Note: The pin diagrams below show the interface on the AP and not the cable. The pin layout on the

cable is the mirror image of these diagrams.

• Note: A cable designed to trigger recording in Motion Studio from an external synchronization event

must make use of isolated ground (pin 3) and record in (pin 1). Assuming a voltage range of 3.3V,

these are the only pins that need to be implemented. If the voltage range is 5V, pins 2 and 6 must be

connected.

• Note: A cable designed to trigger an external system when recording is started or stopped in Motion

Studio must make use of isolated ground (pin 3) and record out (pin 5). Assuming a voltage range of

3.3V, these are the only pins that need to be implemented. If the voltage range is 5V, pins 2 and 6 must

31

5 External Synchronization and I/O

be connected.

5.4.3 External Sync Box

The external sync box is meant to allow for easy access to the access point external digital expansion port.

A shielded straight-through six conductor cable connects the AP to the sync box, BNC connections outside

the box allow for simple connections to remote equipment.

AP External Sync Box

Three external BNC connections:

• AP-AP: This connection should only be connected to another AP, it is used to keep multiple APs in sync

and can be used to connect multiple APs in a star or daisy chain configuration (both will work).

• AP In: This input to the AP can be configured via software to allow an external device to begin and stop

recordings. Accepts both +3.3V and +5V logic levels.

• AP Out: This AP output can be configured via software to drive low, high, or pulse at record start/stop

points allowing synchronization with an external system (such as a camera motion capture system).

Note: the default configuration for AP Out is +3.3V logic levels, though +5V levels can be selected

using the voltage select switch located in the top of the box.

Four LEDs indicators:

• PWR: Lights when power is applied to the external interface.

• +5V: Lights to indicate that the external interface is configured for 5V operation. Default is 3.3V (Light

out)

• AP In: Lights to indicate that the APlIn signal is High

• AP Out: Lights to indicate that the AP Out signal is High

Push-button and Toggle switch:

• Push Button: Up to select 3.3V operation. Down to select 5V operation.

32

5 External Synchronization and I/O

• Toggle: Manually ties the AP In signal to the positive voltage rail allowing for manual triggering of

recordings (software configured).

Additional connections and functionality are located inside the box and can be accessed by removal of the

box top: JP1 through JP4 can be removed to disconnect the corresponding LED.

Six Euro-style screw terminals can be used to directly connect to the six wires in the AP cable:

AP External Sync Box

• +V: Positive voltage rail from the isolated supply located inside the AP.

• GND: Ground rail from the isolated supply located inside the AP.

• VSEL: Tie to Ground or leave floating to select output and +V operation at +3.3V, tie to +V to select +5V

operation.

• AP-AP: Allows multiple AP configurations, tie only to the same port of another AP.

• AP Out: Digital output from the AP. Default is 0V to +3.3V, but can be configured for 0-5V operation.

• AP In: Digital input to the AP from an external source or the manual trigger toggle switch.

Note: The AP is able to safely source only 50mA on the +V rail.

33

5 External Synchronization and I/O

5.4.4 4 Pin Analog Input/Output Connector

Note: This connector is currently reserved for future expansion.

• 4 Pin Mating Connector: Digikey part number CP-2040-ND, CUI Inc part number MD-40

• 4 Pin Mating Pig Tail Cable: Digikey part number 839-1049-ND

AP 4 Pin Analog Connector

• Pin 1: Analog In (0 to 6 volts)

• Pin 2: Analog Out (0 to 5 volts or 0 to 3.3 volts depending on software controled configuration)

• Pin 3: No Connect (reserved for future use, avoid connecting this pin)

• Pin 4: Ground (gnd). This is the same ground as USB, and depending on how your USB hub and/or

laptop are designed electrically, may also be the same ground as the hub and laptop. Consideration

should be taken for ground loops.

5.4.5 Schematic

34

6 Programming Examples

6 Programming Examples

6.1 Example Code Provided with the SDK

The host library distribution provides sample code under dist/samples. Samples include source code and

pre-compiled binaries for the respective applications. The sample applications of most interest are as follows:

• autoconfigure_system.c: This is used to configure a set of attached movement monitors and access

points into wireless streaming mode.

• autoconfigure_rapid_streaming.c: This is used to configure a set of attached movement monitors

and access points into low-latency rapid streaming mode.

• stream_data.c: After a system has been autoconfigured and is streaming data to its respective access

points, this sample will stream data off the access points and print the data, correctly grouped, to the

console.

• stream_data_rapid.c: After a system has been autoconfigured in rapid mode, this demonstrates

retreiving data using the lowest latency mode possible, however it uses in the libraries in such as was

as correlation is not provided by the host libraries.

• autoconfigure_mesh.c: This program is used to configure a set of movement monitors into mesh

time synchronization and logging mode.

• convert_raw.c: This program is used to convert raw ”.apdm” files from a movement monitor into a

CSV or HDF output file.

• configure_low_power_mode.c: This program is used to configure any attached movement monitors

into low power, non-streaming mode.

6.2 Simple Configuration and Streaming Example

6.2.1 High Level Psuedocode

1. Allocate a handle:

apdm_ctx_allocate_new_context()

2. Using the handle, open access points attached to the system:

apdm_ctx_open_all_access_points()

3. Autoconfigure the access point(s) and attached movement monitors.

apdm_autoconfigure_devices_and_accesspoint2()

35

6 Programming Examples

4. Set the max latency value in the libraries.

apdm_ctx_set_max_sample_delay_seconds()

5. Get the attached movement monitor ID list, if useful:

apdm_ctx_get_device_id_list()

6. Synchronize the record head list in the libraries.

apdm_ctx_sync_record_list_head()

7. Collect a list of sensor readings, from all movement monitors, for the same sample point in time. This

is usually used within loop or as a regular event.

apdm_ctx_get_next_access_point_record_list()

8. Extract data readings on a per-movement monitor basis, by movement monitor ID number.

apdm_ctx_extract_data_by_device_id()

9. Disconnect from the attached access points and movement monitors

apdm_ctx_disconnect()

10. Free the allocated context

apdm_ctx_free_context()

6.2.2 C Programming Example

The example below implements the above pseudocode using the C programming language. This example is

a combination of the autoconfigure_system.c and stream_data.c programs included in the SDK sample

code. Much of the verbose output and error handling was removed for this example to keep it short and tidy.

#include "apdm.h"

#include <stdio.h>

#include <inttypes.h>

int main(void)

{

const int32_t num_itterations = 20000000;

int chan = 90;

int r = 0;

apdm_ctx_t apdm_context = ADPM_DEVICE_COMMUNICATIONS_HANDLE_NEW_T_INITIALIZER;

36

6 Programming Examples

apdm_context = apdm_ctx_allocate_new_context();

// Open the context

r = apdm_ctx_open_all_access_points(apdm_context);

// Set the maximum delay for data, the maximum time the application is willing

// to wait for data from a given sensor to come in.

r = apdm_ctx_set_max_sample_delay_seconds(apdm_context, APDM_DEFAULT_MAX_LATENCY_SECONDS);

// Configure all attached monitors to stream data

r = apdm_autoconfigure_devices_and_accesspoint4(apdm_context, chan, true, false, true, true, true, true);

// Wait for the user to undock their monitors before streaming.

printf("\n\nRemove the monitors from their docks, wait until the AP\n");

printf("starts blinking green, and press the enter key to continue...\n");

getchar();

// Fetch the list of monitor IDs

uint32_t deviceIdList[APDM_MAX_NUMBER_OF_SENSORS];

r = apdm_ctx_get_device_id_list(apdm_context, deviceIdList, APDM_MAX_NUMBER_OF_SENSORS);

// Define the record into which sensor data is to be stored.

apdm_record_t raw_rec;

r = apdm_ctx_sync_record_list_head(apdm_context);

for (int i = 0; i < num_itterations; i++) {

// Request the next full set of samples from the AP. All samples returned will be

// from the same point in time for all sensors configured in the system.

r = apdm_ctx_get_next_access_point_record_list(apdm_context);

if(r == APDM_NO_MORE_DATA) {

// The host libraries have not received a full set of data,

// wait a while for more data to stream in from the monitors.

apdm_usleep(4000);//Note: this is a sensitive number while in rapid streaming mode

continue;

} else if(r != APDM_OK) {

printf("ERROR encountered: %d, '%s'\n", r, apdm_strerror(r));

break;

} else {

// Successfully got a set of monitor samples.

}

printf("===\n");

printf("r = %d\n", r);

37

6 Programming Examples

for(int j = 0; j < APDM_MAX_NUMBER_OF_SENSORS; j++) {

if(deviceIdList[j] == 0) {

continue;

}

// Get the sensor data for the given device ID

int ret = apdm_ctx_extract_data_by_device_id(apdm_context, deviceIdList[j], &raw_rec);

if(ret != APDM_OK) {

if(ret == APDM_NO_MORE_DATA) {

// Depending on the error handling mode, this monitor may or may not have data for it.

printf("No More data for device id %d...\n", deviceIdList[j]);

}

continue;

}

// Print some of the calibrated data to the screen

if(raw_rec.accl_isPopulated) {

printf("si, ");

printf("%.3f, %.3f, %.3f, ", raw_rec.accl_x_axis_si, raw_rec.accl_y_axis_si, raw_rec.accl_z_axis_si);

printf("%.3f, %.3f, %.3f, ", raw_rec.gyro_x_axis_si, raw_rec.gyro_y_axis_si, raw_rec.gyro_z_axis_si);

printf("%.3f, %.3f, %.3f, ", raw_rec.mag_x_axis_si, raw_rec.mag_y_axis_si, raw_rec.mag_z_axis_si);

printf("\n");

}

}

}

apdm_ctx_disconnect(apdm_context);

apdm_ctx_free_context(apdm_context);

return(0);

}

6.2.3 Java Programming Example

An example program for configuring and streaming data from a Java application is provided below. Functions

available in the Java libraries are usually mappings of the corresponding c-functions, and more detailed doc-

umentation can be found in the dOxygen documentation. This example is equivalent to the above example

provided in C, with some additional modifications to provide insight into how to set the labels on the monitors

and how to write streaming data to our HDF format.

38

6 Programming Examples

import java.io.File;

import java.util.List;

import com.apdm.APDMException;

import com.apdm.APDMNoMoreDataException;

import com.apdm.Context;

import com.apdm.Device;

import com.apdm.DockingStation;

import com.apdm.RecordRaw;

public class StreamDataSample {

public static void main(String args[]) throws Exception {

setLabels();

apAutoConfig();

System.out.println("Please remove monitors from their docks and press enter...");

System.in.read();

streamData();

}

public static void setLabels() throws APDMException {

Context context = null;

try {

context = Context.getInstance();

context.open();

int nDocks = DockingStation.getNumAttached();

for (int iDock=0; iDock<nDocks; iDock++) {

DockingStation dock = null;

Device sensor = null;

try {

dock = DockingStation.openByIndex(iDock);

if (!dock.isMonitorPresent()) {

return;

}

sensor = dock.attachedDevice;

String caseId = sensor.cmd_get_device_case_id();

// For this example, just set the label to the case ID. This can be any string <= 15 characters long.

// More typically, the user will know which label they which to apply to which sensor based on the

// unique case ID on the back of the sensor, so a mapping may be used here to determine the label.

sensor.cmd_set_device_label(caseId);

sensor.cmd_config_commit();

System.out.println("Set label on sensor in dock " + (iDock+1) + " to " + caseId);

} finally {

if (dock != null) {

dock.close();

}

}

}

39

6 Programming Examples

} catch (Exception ex) {

System.out.println(ex.getMessage());

System.out.println("Could not set labels on docked sensors");

} finally {

if (context != null) {

context.close();

}

}

}

public static void apAutoConfig() throws Exception {

Context context = null;

try {

context = Context.getInstance();

context.open();

int wirelessChannel = 80;

boolean enableSDCard = true;

boolean eraseSDCard = false;

boolean accelFullScaleMode = true;

boolean enableAccel = true;

boolean enableGyro = true;

boolean enableMag = true;

context.autoConfigureDevicesAndAccessPoint4(

wirelessChannel,

enableSDCard,

eraseSDCard,

accelFullScaleMode,

enableAccel,

enableGyro,

enableMag);

System.out.println("Done configuring system for wireless streaming");

} finally {

if (context != null) {

context.close();

}

}

}

public static void streamAndRecordData() throws Exception {

Context context = Context.getInstance();

int hdfFileHandle = 0;

try {

context.open();

// Create the HDF file to write to

String filePath = "./recording.h5";

hdfFileHandle = context.createHDFFile("recording.h5");

File file = new File(filePath);

40

6 Programming Examples

if (hdfFileHandle == 0 || !file.exists()) {

throw new Exception("Could not create file at: " + filePath);

}

System.out.println("File created at " + file.getAbsolutePath());

int min_latency_seconds = 0;

int max_latency_seconds = 0xffff;

// Set the max latency to something small to flush

// any existing data buffered on the monitors

context.setMaxLatency(min_latency_seconds);

// Wait a little bit to give the monitors time to receive

// the command and process it.

Thread.sleep(3000);

// Set the max latency time back to something big.

// This will force the AP to process old packets if the sensors

// go out of range of the AP

context.setMaxLatency(max_latency_seconds);

// Sync the record head list. This is a method in the host

// libraries which waits to correlate data from all streaming devices

// before emitting correlated sets of data.

context.syncRecordHeadList();

// Call this many times to stream data

int sampleNum = 0;

for (int i = 0; i < 1000; i++) {

List<RecordRaw> records = null;

try {

records = context.getNextRecordList();

} catch (APDMNoMoreDataException ex) {

// No data found, so wait just a bit for data to become available.

Thread.sleep(100);

}

// The list of records will be empty if no data was found.

if (!records.isEmpty()) {

boolean storeRaw = false;

boolean storeSI = true;

boolean storeFiltered = false;

boolean compress = true;

context.writeRecordToHDF(hdfFileHandle, sampleNum, storeRaw, storeSI, storeFiltered, compress);

for (RecordRaw rec : records) {

System.out.println(rec.toString());

}

sampleNum++;

41

6 Programming Examples

}

}

} finally {

if (hdfFileHandle != 0) {

context.closeHDFFile(hdfFileHandle);

}

if (context != null) {

context.close();

}

}

}

}

6.2.4 Matlab Programming Examples

A set of example matlab programs are provided in the APDM SDK, available from http://share.apdm.com/libraries/

In the SDK zip file, under the matlab/(operating system)/(arch)/ you will find respective .m code, libraries and

thunk files.

42

7 Working with HDF5 Files

7 Working with HDF5 Files
HDF5 is the preferred format for storing APDM movement monitor data. It is a standard format for scientific

data that is efficient and widely supported. It uses less space than CSV, is faster to load, and supports more

structured data. This section will cover the organization of the APDM movement monitor data and the basics

of reading HDF5 files in MATLAB.

7.1 HDFView

A free program called HDFView (http://www.hdfgroup.org/hdf-java-html/hdfview/) can be used to

explore, plot, and export this data into other formats. A variety of free open source tools for working with HDF

files are also available at http://www.hdfgroup.org/HDF5/release/obtain5.html.

7.2 Data Organization

HDF5 files are organized like a file structure. The root of the file contains two attributes. One is a list of

monitor IDs that have data stored in this file. The other is a version number for the organization of the HDF

5 file.

7.3 File Structure

7.3.1 Versions 3 and 4

• MonitorLabelList Attribute containing an array of monitor labels in the same order as the CaseIdList

• CaseIdList Attribute containing an array of monitor case IDs in the same order as the MonitorLabelList

• FileFormatVersion Attribute containing the file format version (3)

• Annotations Table containing annotations

– Time Annotation time in epoch microseconds

– Case ID A movement monitor case ID associated with the annotation

– Annotation The annotation string

• AA-XXXXXX A group is included in the file for each monitor in the CaseIdList, with the name equal to the case ID

– FilteredDataPopulated (version 4) Attribute indicating the present of the filtered data group

– SampleRate Attribute containing the output data rate for the monitor

– DecimationFactor Decimation factor for the monitor’s internal processing

– ModuleID The module ID for the monitor

– TimeGood Flag indicating whether the time has been set on the monitor since it powered on

– RecordingMode One of: ”Wireless streaming”, ”Synchronized logging”, or ”Unsynchronized logging”

– DataMode Indicates whether the data was retrieved wirelessly or copied from the monitor’s internal storage while

docked. One of: ”Streamed wirelessly” or ”Logged to monitor”

43

http://www.hdfgroup.org/hdf-java-html/hdfview/
http://www.hdfgroup.org/HDF5/release/obtain5.html

7 Working with HDF5 Files

– AccelerometersEnabled 1 for enabled, 0 for disabled

– GyroscopesEnabled 1 for enabled, 0 for disabled

– MagnetometersEnabled 1 for enabled, 0 for disabled

– DecimationBypass Internal use, deprecated

– CalibrationVersion Version of the calibration data used to convert from raw samples to calibrated SI units

– VersionString1 Firmware version string 1

– VersionString2 Firmware version string 2

– VersionString3 Firmware version string 3

– CalibratedDataPopulated (version 3) 1 for populated, 0 for unpopulated

– CalibratedData (version 4) Calibration data for the monitor

– LocalTimeOffset Time in microseconds to add to UTC to convert to local time

– SyncValue Dataset containing the internal sync value for each sample

* Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1, 1970 UTC)

– Time Dataset containing a timestamp for each sample

* Units Attribute string containing the units (microseconds since 0:00 Jan 1, 1970 UTC)

– ButtonStatus Dataset containing the button status for each sample (1==pressed, 0==unpressed)

– Calibrated Group containing calibrated data

* Accelerometers Dataset containing accelerometer data (Nx3)

· Units Attribute string containing the accelerometer units (m/s2)

· Range Attribute containing the range setting for the accelerometer (2g or 6g)

· Gravity (version 4) Attribute indicating the gravity constant used in orientation estimation

* Gyroscopes Dataset containing gyroscope data (Nx3)

· Units Attribute string containing the gyroscope units (rad/s)

* Magnetometers Dataset containing magnetometer data (Nx3)

· Units Attribute string containing the magnetometer units (µT)

* Temperature Dataset containing the temperature (Nx1)

· Units Attribute string containing the temperature units (◦C)

· EarthFieldMagnitude (version 4) The field constant used in orientation estimation

* TemperatureDerivative Dataset containing the temperature derivative (Nx1)

· Units Attribute string containing the temperature derivative units (◦C/s)

* Orientation Dataset containing the orientation quaternion (Nx4). The orientation is relative to a (magnetic) north,

west, up reference frame. The scalar component of the quaternion is the first element.

– Raw Group containing raw data if selected during import

* Accelerometers

* Gyroscopes

* Magnetometers

* DataFlags

* OptData

* Temperature

* TemperatureDerivative

– Filtered (version 4) Filtered data set. This set is intended for post-processed data. Currently the gyro biases are

removed from the gyroscope signals. In the future, additional filtering may be implemented.

* Accelerometers

* Gyroscopes
44

7 Working with HDF5 Files

* Magnetometers

7.3.2 Version 3

• MonitorLabelList Attribute containing an array of monitor labels in the same order as the CaseIdList

• CaseIdList Attribute containing an array of monitor case IDs in the same order as the MonitorLabelList

• FileFormatVersion Attribute containing the file format version (3)

• Annotations Table containing annotations

– Time Annotation time in epoch microseconds

– Case ID A movement monitor case ID associated with the annotation

– Annotation The annotation string

• AA-XXXXXX A group is included in the file for each monitor in the CaseIdList, with the name equal to the case ID

– SampleRate Attribute containing the output data rate for the monitor

– DecimationFactor Decimation factor for the monitor’s internal processing

– ModuleID The module ID for the monitor

– TimeGood Flag indicating whether the time has been set on the monitor since it powered on

– RecordingMode One of: ”Wireless streaming”, ”Synchronized logging”, or ”Unsynchronized logging”

– DataMode Indicates whether the data was retrieved wirelessly or copied from the monitor’s internal storage while

docked. One of: ”Streamed wirelessly” or ”Logged to monitor”

– AccelerometersEnabled 1 for enabled, 0 for disabled

– GyroscopesEnabled 1 for enabled, 0 for disabled

– MagnetometersEnabled 1 for enabled, 0 for disabled

– DecimationBypass Internal use, deprecated

– CalibrationVersion Version of the calibration data used to convert from raw samples to calibrated SI units

– VersionString1 Firmware version string 1

– VersionString2 Firmware version string 2

– VersionString3 Firmware version string 3

– CalibratedDataPopulated 1 for populated, 0 for unpopulated

– LocalTimeOffset Time in milliseconds to add to UTC to convert to local time

– SyncValue Dataset containing the internal sync value for each sample

* Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1, 1970 UTC)

– Time Dataset containing a timestamp for each sample

* Units Attribute string containing the units (microseconds since 0:00 Jan 1, 1970 UTC)

– ButtonStatus Dataset containing the button status for each sample (1==pressed, 0==unpressed)

– Calibrated Group containing calibrated data

* Accelerometers Dataset containing accelerometer data (Nx3)

· Units Attribute string containing the accelerometer units (m/s2)

· Range Attribute containing the range setting for the accelerometer (2g or 6g)

* Gyroscopes Dataset containing gyroscope data (Nx3)

· Units Attribute string containing the gyroscope units (rad/s)

* Magnetometers Dataset containing magnetometer data (Nx3)

· Units Attribute string containing the magnetometer units (µT)

* Temperature Dataset containing the temperature (Nx1)

45

7 Working with HDF5 Files

· Units Attribute string containing the temperature units (◦C)

* TemperatureDerivative Dataset containing the temperature derivative (Nx1)

· Units Attribute string containing the temperature derivative units (◦C/s)

* Orientation Dataset containing the orientation quaternion (Nx4). The orientation is relative to a (magnetic) north,

west, up reference frame. The scalar component of the quaternion is the first element.

– Raw Group containing raw data if selected during import

* Accelerometers

* Gyroscopes

* Magnetometers

* DataFlags

* OptData

* Temperature

* TemperatureDerivative

7.3.3 Version 2

• MonitorLabelList Attribute containing an array of monitor labels in the same order as the CaseIdList

• CaseIdList Attribute containing an array of monitor case IDs in the same order as the MonitorLabelList

• FileFormatVersion Attribute containing the file format version (2)

• Annotations Table containing annotations

– Time Annotation time in epoch microseconds

– Case ID A movement monitor case ID associated with the annotation

– Annotation The annotation string

• AA-XXXXXX A group is included in the file for each monitor in the CaseIdList, with the name equal to the case ID

– SampleRate Attribute containing the output data rate for the monitor

– DecimationFactor Decimation factor for the monitor’s internal processing

– ModuleID The module ID for the monitor

– TimeGood Flag indicating whether the time has been set on the monitor since it powered on

– RecordingMode One of: ”Wireless streaming”, ”Synchronized logging”, or ”Unsynchronized logging”

– DataMode Indicates whether the data was retrieved wirelessly or copied from the monitor’s internal storage while

docked. One of: ”Streamed wirelessly” or ”Logged to monitor”

– AccelerometersEnabled 1 for enabled, 0 for disabled

– GyroscopesEnabled 1 for enabled, 0 for disabled

– MagnetometersEnabled 1 for enabled, 0 for disabled

– DecimationBypass Internal use, deprecated

– CalibrationVersion Version of the calibration data used to convert from raw samples to calibrated SI units

– VersionString1 Firmware version string 1

– VersionString2 Firmware version string 2

– VersionString3 Firmware version string 3

– CalibratedDataPopulated 1 for populated, 0 for unpopulated

– LocalTimeOffset Time in milliseconds to add to UTC to convert to local time

– SyncValue Dataset containing the internal sync value for each sample

* Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1, 1970 UTC)

46

7 Working with HDF5 Files

– Time Dataset containing a timestamp for each sample

* Units Attribute string containing the units (microseconds since 0:00 Jan 1, 1970 UTC)

– Calibrated Group containing calibrated data

* Accelerometers Dataset containing accelerometer data (Nx3)

· Units Attribute string containing the accelerometer units (m/s2)

· Range Attribute containing the range setting for the accelerometer (2g or 6g)

* Gyroscopes Dataset containing gyroscope data (Nx3)

· Units Attribute string containing the gyroscope units (rad/s)

* Magnetometers Dataset containing magnetometer data (Nx3)

· Units Attribute string containing the magnetometer units (µT)

* Temperature Dataset containing the temperature (Nx1)

· Units Attribute string containing the temperature units (◦C)

* TemperatureDerivative Dataset containing the temperature derivative (Nx1)

· Units Attribute string containing the temperature derivative units (◦C/s)

– Raw Group containing raw data if selected during import

* Accelerometers

* Gyroscopes

* Magnetometers

* DataFlags

* OptData

* Temperature

* TemperatureDerivative

7.3.4 Version 1

This version is deprecated. All new files created will use the most recent version.

• Device List Attribute containing a list of monitors present in the file

• File Format Version Attribute containing the file version

• Annotations Table containing annotations

– Time Annotation time in epoch microseconds

– Device ID A movement monitor ID associated with the annotation

– Annotation The annotation string

• Opal xxx/ Group containing information about and data from monitor ID xxx

– Sample Rate Attribute containing the output data rate for the monitor

– Decimation Factor Decimation factor for the monitor’s internal processing

– Time Good Flag indicating whether the monitor has had its time set since turning on

– Decimation Bypass Internal use, deprecated

– Calibration Version Version of the calibration data used to convert from raw samples to calibrated SI units

– Version String1 Firmware version string 1

– Version String2 Firmware version string 2

– Version String3 Firmware version string 3

47

7 Working with HDF5 Files

– Acceleration Dataset containing data from the accelerometers (Nx3)

* Units Attribute string containing the acceleration units (m/s2)

– Angular Velocity Dataset containing data from the gyroscopes (Nx3)

* Units Attribute string containing the angular velocity units (rad/s)

– Magnetic Field Dataset containing data from the magnetometers (Nx3)

* Units Attribute string containing the magnetic field units (a.u.)

– Temperature Dataset containing the temperature of the monitor (Nx1)

* Units Attribute string containing the temperature units (◦C)

– Temperature Derivative Dataset containing the rate of change of temperature

* Units Attribute string containing the temperature derivative units (◦C/s)

– Sync Value Dataset containing the internal timestamp of each sample

* Units Attribute string containing the timestamp units (1/2560th of a second since 0:00 Jan 1, 1970 UTC)

* Time Dataset containing the time for each sample in microseconds since 0:00 Jan 1, 1970 UTC

Additional fields present when raw data is also stored:

• Opal XX/

– Calibration Data Attribute containing binary block of calibration data

– Raw File Version Attribute containing the version string of the raw file (if this was converted from a .apdm file instead

of streamed)

– Accelerometers Raw Dataset containing raw accelerometer data (Nx3)

– Gyroscopes Raw Dataset containing raw gyroscope data (Nx3)

– Magnetometers Raw Dataset containing raw magnetometer data (Nx3)

– Data Flags Dataset containing flags used for processing the raw data

– Opt Data Dataset containing several measurements taken at a low data rate

– Temperature Raw Dataset containing lowpass filtered, but uncalibrated temperature data (Nx1)

7.4 Working with HDF 5 in MATLAB

MATLAB contains two high level functions for working with HDF5 files. Additional help and examples are

included in the built in help documentation for these functions.

hdf5info reads the structure of the file and all of the attribute values and returns them in an easy to browse

MATLAB structure.

hdf5read reads a complete dataset or attribute from the HDF5 file.

Additionally, one more high level helper function is included with the APDM movement monitor software. This

function also contains built in help documentation and examples.

hdf5readslab reads a portion of a dataset from the HDF5 file.

48

7 Working with HDF5 Files

7.5 Examples

Below is simple example of loading acceleration data from an APDM movement monitor HDF5 file (version

2 or later) in MATLAB. For version 1 files, the dataset paths simply need to be changed to match the format

listed above.

filename = 'example.h5';

try

vers = hdf5read(filename, '/FileFormatVersion');

catch

try

vers = hdf5read(filename, '/File_Format_Version');

catch

error('Couldn''t determine file format');

end

end

if vers< 2

error('This example only works with version 2 or later of the data file')

end

caseIdList = hdf5read(filename, '/CaseIdList');

groupName = caseIdList(1).data;

accPath = [groupName '/Calibrated/Accelerometers'];

fs = hdf5read(filename, [groupName '/SampleRate']);

fs = double(fs);

acc = hdf5read(filename, accPath)'; %Transposed to make Nx3 in MATLAB}

t = (1:size(acc,1))/fs;

figure;

plot(t,acc);

A more complicated example using the flexibility of HDF5 to load and process only part of a data set. This

can be useful when the data set is too large to fit into memory. Care is taken not to attempt to read beyond

the end of the file.

filename = 'example.h5';

try

vers = hdf5read(filename, '/FileFormatVersion');

catch

try

vers = hdf5read(filename, '/File_Format_Version');

catch

error('Couldn''t determine file format');

end

49

7 Working with HDF5 Files

end

if vers < 2

error('This example only works with version 2 or later of the data file')

end

idList = hdf5read(filename, '/CaseIdList');

groupName = idList(1).data;

accPath = [groupName '/Calibrated/Accelerometers'];

fs = hdf5read(filename, [groupName '/SampleRate']);

fs = double(fs);

fhandle = H5F.open(filename, 'H5F_ACC_RDONLY', 'H5P_DEFAULT');

dset = H5D.open(fhandle, [groupName '/Calibrated/Accelerometers'], 'H5P_DEFAULT');

dspace = H5D.get_space(dset);

[ndims, dims] = H5S.get_simple_extent_dims(dspace);

nSamples = dims(1);

nSamplesRead = min(nSamples, 60*fs); %read at most one minute of data

accSegment = hdf5readslab(filename, accPath, [0,0], [nSamplesRead, 3])';

t = (1:nSamplesRead)/fs;

figure;

plot(t,accSegment);

7.6 Notes

• Arrays in MATLAB use the FORTRAN convention of storing them in memory by column then row,

instead of the C convention (used by HDF 5) of row then column. This has the effect of making the

returned arrays transposed from how this document (and many other interfaces to HDF5) claim they

are laid out.

• Older versions of MATLAB (before 2009a) did not support the compression used in Motion Studio’s

HDF 5 files. If you are using one of these older versions, the free h5repack utility available from the

HDF Group can remove the compression. This utility is available at:

http://www.hdfgroup.org/HDF5/release/obtain5.html

The command to repack the file is:
h5repack -f NONE example.h5 example_no_compression.h5

50

http://www.hdfgroup.org/HDF5/release/obtain5.html

8 Calibration

8 Calibration
There are two 2KB blocks of calibration data stored on each monitor’s internal flash memory. The first of

these contains factory calibration and should not be modified. The second one contains user calibration. If

the user calibration block is valid, it will be used for calibrating raw data instead of the factory calibration.

There are two ways to modify the user calibration: using the recalibration functionality in Motion Studio, or by

loading a custom calibration .hex file in Motion Studio. This section details the .hex file format and contents.

8.1 File Format

The .hex file is a plain text (ASCII) file format based on the Tektronix extended HEX file format, with small

modifications. The file format has two types of records:

• Data records: contains the header field, the load address, and the object code.

• Termination records: signifies the end of a module.

The header field in the data record contains the following information.

Item Number of ASCII Characters Description

% 1 Data type is Tektronix format

Block Length 2 Number of characters in the record, minus the %

Block Type 1
6 = data record

8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record

except the % and the checksum itself

The load address in the data record specifies where the object code will be located. The first digit specifies

the address length; this is always 8. The remaining characters of the data record contain the object code,

two characters per byte.

The termination record is not used in this context. It is also assumed that lines starting with ’#’ are comments

and should be ignored by the parser. Metadata lines are designated with a leading ’:’ character. The

comments and meta data extensions are not part of the original format.

51

8 Calibration

Hex Format

%1a626810000000202020202020

Object code: 6 bytes

1+10+6+8+1+0+0+0+0+0+0+0+
2+0+2+0+2+0+2+0+2+0+2+0

Load address: 10000000hLength of
load address: 8

Checksum: 26h =

Block type: 6
(data)

Block length:
1ah=26

Header
character

8.2 Data Format

8.2.1 Calibration version 5

The tables below show the organization of the calibration data in the hex file. The first 64 bits are a version

number, and must be equal to the specified value. Wherever a zero is present in the tables, it should be

interpreted as a literal zero to be stored in that memory location. All of the calibration data is represented in

one of two data types. The first is a fixed point 64-bit integer with 50 fractional bits in 2’s compliment format

(Q13.50). The second is an unsigned 16-bit integer.

16-bit integers are used for representing temperature dependent bias for each sensor. The subscript on the

values in the table below denotes the temperature in degrees Celsius. There are two temperature sensors

on the monitor (one on the gyro, and one on the microcontroller), and each has a different set of scale and

offset values. Of the two, the gyro temperature sensor is more accurate, so it is used by default. If the gyro

is configured to be turned off, the MSP temperature sensor is used instead.

Near the end of the memory block there are three magnetometer bias values. These are used as part of the

internal bias compensation and should not be modified.

52

8 Calibration

offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x000 0x8000000000000005 acc x scale

0x010 acc y scale acc z scale

0x020 acc x scale temp acc y scale temp

0x030 acc z scale temp acc xy sensitivity

0x040 acc xz sensitivity acc yz sensitivity

0x050 0 xacc b -10 xacc b -09 xacc b -08 xacc b -07

0x060 xacc b -06 xacc b -05 xacc b -04 xacc b -03 xacc b -02 xacc b -01 xacc b 00 xacc b 01

0x070 xacc b 02 xacc b 03 xacc b 04 xacc b 05 xacc b 06 xacc b 07 xacc b 08 xacc b 09

0x080 xacc b 10 xacc b 11 xacc b 12 xacc b 13 xacc b 14 xacc b 15 xacc b 16 xacc b 17

0x090 xacc b 18 xacc b 19 xacc b 20 xacc b 21 xacc b 22 xacc b 23 xacc b 24 xacc b 25

0x0a0 xacc b 26 xacc b 27 xacc b 28 xacc b 29 xacc b 30 xacc b 31 xacc b 32 xacc b 33

0x0b0 xacc b 34 xacc b 35 xacc b 36 xacc b 37 xacc b 38 xacc b 39 xacc b 40 xacc b 41

0x0c0 xacc b 42 xacc b 43 xacc b 44 xacc b 45 xacc b 46 xacc b 47 xacc b 48 xacc b 49

0x0d0 xacc b 50 yacc b -10 yacc b -09 yacc b -08 yacc b -07 yacc b -06 yacc b -05 yacc b -04

0x0e0 yacc b -03 yacc b -02 yacc b -01 yacc b 00 yacc b 01 yacc b 02 yacc b 03 yacc b 04

0x0f0 yacc b 05 yacc b 06 yacc b 07 yacc b 08 yacc b 09 yacc b 10 yacc b 11 yacc b 12

0x100 yacc b 13 yacc b 14 yacc b 15 yacc b 16 yacc b 17 yacc b 18 yacc b 19 yacc b 20

0x110 yacc b 21 yacc b 22 yacc b 23 yacc b 24 yacc b 25 yacc b 26 yacc b 27 yacc b 28

0x120 yacc b 29 yacc b 30 yacc b 31 yacc b 32 yacc b 33 yacc b 34 yacc b 35 yacc b 36

0x130 yacc b 37 yacc b 38 yacc b 39 yacc b 40 yacc b 41 yacc b 42 yacc b 43 yacc b 44

0x140 yacc b 45 yacc b 46 yacc b 47 yacc b 48 yacc b 49 yacc b 50 zacc b -10 zacc b -09

0x150 zacc b -08 zacc b -07 zacc b -06 zacc b -05 zacc b -04 zacc b -03 zacc b -02 zacc b -01

0x160 zacc b 00 zacc b 01 zacc b 02 zacc b 03 zacc b 04 zacc b 05 zacc b 06 zacc b 07

0x170 zacc b 08 zacc b 09 zacc b 10 zacc b 11 zacc b 12 zacc b 13 zacc b 14 zacc b 15

0x180 zacc b 16 zacc b 17 zacc b 18 zacc b 19 zacc b 20 zacc b 21 zacc b 22 zacc b 23

0x190 zacc b 24 zacc b 25 zacc b 26 zacc b 27 zacc b 28 zacc b 29 zacc b 30 zacc b 31

0x1a0 zacc b 32 zacc b 33 zacc b 34 zacc b 35 zacc b 36 zacc b 37 zacc b 38 zacc b 39

0x1b0 zacc b 40 zacc b 41 zacc b 42 zacc b 43 zacc b 44 zacc b 45 zacc b 46 zacc b 47

0x1c0 zacc b 48 zacc b 49 zacc b 50 0 gyro x scale

0x1d0 gyro y scale gyro z scale

0x1e0 gyro xy sensitivity gyro xz sensitivity

0x1f0 gyro yz sensitivity gyro accel roll

0x200 gyro accel pitch gyro accel yaw

0x210 gyro x scale temp gyro y scale temp

0x220 gyro z scale temp xgyr b -10 xgyr b -09 xgyr b -08 xgyr b -07

0x230 xgyr b -06 xgyr b -05 xgyr b -04 xgyr b -03 xgyr b -02 xgyr b -01 xgyr b 00 xgyr b 01

53

8 Calibration

offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x240 xgyr b 02 xgyr b 03 xgyr b 04 xgyr b 05 xgyr b 06 xgyr b 07 xgyr b 08 xgyr b 09

0x250 xgyr b 10 xgyr b 11 xgyr b 12 xgyr b 13 xgyr b 14 xgyr b 15 xgyr b 16 xgyr b 17

0x260 xgyr b 18 xgyr b 19 xgyr b 20 xgyr b 21 xgyr b 22 xgyr b 23 xgyr b 24 xgyr b 25

0x270 xgyr b 26 xgyr b 27 xgyr b 28 xgyr b 29 xgyr b 30 xgyr b 31 xgyr b 32 xgyr b 33

0x280 xgyr b 34 xgyr b 35 xgyr b 36 xgyr b 37 xgyr b 38 xgyr b 39 xgyr b 40 xgyr b 41

0x290 xgyr b 42 xgyr b 43 xgyr b 44 xgyr b 45 xgyr b 46 xgyr b 47 xgyr b 48 xgyr b 49

0x2a0 xgyr b 50 ygyr b -10 ygyr b -09 ygyr b -08 ygyr b -07 ygyr b -06 ygyr b -05 ygyr b -04

0x2b0 ygyr b -03 ygyr b -02 ygyr b -01 ygyr b 00 ygyr b 01 ygyr b 02 ygyr b 03 ygyr b 04

0x2c0 ygyr b 05 ygyr b 06 ygyr b 07 ygyr b 08 ygyr b 09 ygyr b 10 ygyr b 11 ygyr b 12

0x2d0 ygyr b 13 ygyr b 14 ygyr b 15 ygyr b 16 ygyr b 17 ygyr b 18 ygyr b 19 ygyr b 20

0x2e0 ygyr b 21 ygyr b 22 ygyr b 23 ygyr b 24 ygyr b 25 ygyr b 26 ygyr b 27 ygyr b 28

0x2f0 ygyr b 29 ygyr b 30 ygyr b 31 ygyr b 32 ygyr b 33 ygyr b 34 ygyr b 35 ygyr b 36

0x300 ygyr b 37 ygyr b 38 ygyr b 39 ygyr b 40 ygyr b 41 ygyr b 42 ygyr b 43 ygyr b 44

0x310 ygyr b 45 ygyr b 46 ygyr b 47 ygyr b 48 ygyr b 49 ygyr b 50 zgyr b -10 zgyr b -09

0x320 zgyr b -08 zgyr b -07 zgyr b -06 zgyr b -05 zgyr b -04 zgyr b -03 zgyr b -02 zgyr b -01

0x330 zgyr b 00 zgyr b 01 zgyr b 02 zgyr b 03 zgyr b 04 zgyr b 05 zgyr b 06 zgyr b 07

0x340 zgyr b 08 zgyr b 09 zgyr b 10 zgyr b 11 zgyr b 12 zgyr b 13 zgyr b 14 zgyr b 15

0x350 zgyr b 16 zgyr b 17 zgyr b 18 zgyr b 19 zgyr b 20 zgyr b 21 zgyr b 22 zgyr b 23

0x360 zgyr b 24 zgyr b 25 zgyr b 26 zgyr b 27 zgyr b 28 zgyr b 29 zgyr b 30 zgyr b 31

0x370 zgyr b 32 zgyr b 33 zgyr b 34 zgyr b 35 zgyr b 36 zgyr b 37 zgyr b 38 zgyr b 39

0x380 zgyr b 40 zgyr b 41 zgyr b 42 zgyr b 43 zgyr b 44 zgyr b 45 zgyr b 46 zgyr b 47

0x390 zgyr b 48 zgyr b 49 zgyr b 50 0 mag x scale

0x3a0 mag y scale mag z scale

0x3b0 mag xy sensitivity mag xz sensitivity

0x3c0 mag yz sensitivity mag accel roll

0x3d0 mag accel pitch mag accel yaw

0x3e0 mag x scale temp mag y scale temp

0x3f0 mag z scale temp xmag b -10 xmag b -09 xmag b -08 xmag b -07

0x400 xmag b -06 xmag b -05 xmag b -04 xmag b -03 xmag b -02 xmag b -01 xmag b 00 xmag b 01

0x410 xmag b 02 xmag b 03 xmag b 04 xmag b 05 xmag b 06 xmag b 07 xmag b 08 xmag b 09

0x420 xmag b 10 xmag b 11 xmag b 12 xmag b 13 xmag b 14 xmag b 15 xmag b 16 xmag b 17

0x430 xmag b 18 xmag b 19 xmag b 20 xmag b 21 xmag b 22 xmag b 23 xmag b 24 xmag b 25

0x440 xmag b 26 xmag b 27 xmag b 28 xmag b 29 xmag b 30 xmag b 31 xmag b 32 xmag b 33

0x450 xmag b 34 xmag b 35 xmag b 36 xmag b 37 xmag b 38 xmag b 39 xmag b 40 xmag b 41

0x460 xmag b 42 xmag b 43 xmag b 44 xmag b 45 xmag b 46 xmag b 47 xmag b 48 xmag b 49

0x470 xmag b 50 ymag b -10 ymag b -09 ymag b -08 ymag b -07 ymag b -06 ymag b -05 ymag b -04

54

8 Calibration

offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x480 ymag b -03 ymag b -02 ymag b -01 ymag b 00 ymag b 01 ymag b 02 ymag b 03 ymag b 04

0x490 ymag b 05 ymag b 06 ymag b 07 ymag b 08 ymag b 09 ymag b 10 ymag b 11 ymag b 12

0x4a0 ymag b 13 ymag b 14 ymag b 15 ymag b 16 ymag b 17 ymag b 18 ymag b 19 ymag b 20

0x4b0 ymag b 21 ymag b 22 ymag b 23 ymag b 24 ymag b 25 ymag b 26 ymag b 27 ymag b 28

0x4c0 ymag b 29 ymag b 30 ymag b 31 ymag b 32 ymag b 33 ymag b 34 ymag b 35 ymag b 36

0x4d0 ymag b 37 ymag b 38 ymag b 39 ymag b 40 ymag b 41 ymag b 42 ymag b 43 ymag b 44

0x4e0 ymag b 45 ymag b 46 ymag b 47 ymag b 48 ymag b 49 ymag b 50 zmag b -10 zmag b -09

0x4f0 zmag b -08 zmag b -07 zmag b -06 zmag b -05 zmag b -04 zmag b -03 zmag b -02 zmag b -01

0x500 zmag b 00 zmag b 01 zmag b 02 zmag b 03 zmag b 04 zmag b 05 zmag b 06 zmag b 07

0x510 zmag b 08 zmag b 09 zmag b 10 zmag b 11 zmag b 12 zmag b 13 zmag b 14 zmag b 15

0x520 zmag b 16 zmag b 17 zmag b 18 zmag b 19 zmag b 20 zmag b 21 zmag b 22 zmag b 23

0x530 zmag b 24 zmag b 25 zmag b 26 zmag b 27 zmag b 28 zmag b 29 zmag b 30 zmag b 31

0x540 zmag b 32 zmag b 33 zmag b 34 zmag b 35 zmag b 36 zmag b 37 zmag b 38 zmag b 39

0x550 zmag b 40 zmag b 41 zmag b 42 zmag b 43 zmag b 44 zmag b 45 zmag b 46 zmag b 47

0x560 zmag b 48 zmag b 49 zmag b 50 0 temp bias

0x570 temp scale temp bias msp

0x580 temp scale msp mag x bias

0x590 mag y bias mag z bias

0x5a0 mag conversion gain 0

0x5b0 0 0
...

...

0x7f0 0 0

55

9 Firmware Updates

9 Firmware Updates
Firmware controls the various hardware components of your APDM product line (monitors, access points,

and docking stations). It is important to keep the firmware up to date to ensure that your system gets the

latest bug fixes and has access to the latest features. Firmware updates are bundled with updates to Motion

Studio. Firmware can be updated either automatically or manually.

9.1 Automatic Firmware Updates

Whenever you configure your system, your hardware is first checked to ensure that the latest firmware is

installed. If not, you will be prompted to automatically update your hardware to the latest versions of the

firmware bundled with your system.

9.2 Manual Firmware Updates

Firmware can be updated manually as well. This functionality can be used to either flash the default firmware

to one of the hardware components, or to flash a different version. To access the “Update Firmware” dialog,

click on “Tools→ Update Firmware” in the menu bar.

The manual firmware update tool

9.2.1 Flash Default Firmware

Your system comes bundled with an up to date version of the firmware. Pressing this button will re-flash this

version of the firmware onto the specified monitor.

9.2.2 Flash Alternate Firmware

For testing purposes or to address an issue in a timely fashion, it may be necessary to flash a monitor with

a version of the firmware that is different than the bundled version. You will have to specify the alternate

firmware file to use with this option.

56

9 Firmware Updates

9.2.3 Force Update

When using either of the options above, if the firmware version on the target device(s) matches the firmware

version to be flashed, the device will be skipped. If the “Force update even if versions match” checkbox is

selected, however, the firmware will be flashed even if the versions match. This may be necessary in some

cases to recover a malfunctioning device.

57

10 Movement Monitor Reference

10 Movement Monitor Reference

10.1 Charging

A movement monitor charges its internal battery any time it is connected to a docking station. At the optimal

charge rate the movement monitors internal battery will complete its bulk charge (80%-90%) within an hour

for a fully discharged battery. It is recommended that the movement monitor be charged for up to 3 hours to

provide a peak charge to the battery ensuring it has the longest run time and improves battery life.

Warning: Your movement monitor uses a lithium battery. This battery may only be charged over a limited

temperature range. Never attempt to dock or charge your Opal when the temperature experienced can be

outside the range of 0 to 45 degrees Celsius (32 to 113 degrees Fahrenheit). The recommended charging

and docking temperature range is between 5 to 35 degrees Celsius (40 to 95 degrees Fahrenheit).

10.2 Powering Down

If you wish to power down your monitors for storage or travel, dock the monitors you wish to power down and

click on the “Power Off” button in Motion Studio. After this process is complete, these monitors will power

down when they are undocked. They can be powered back on by re-applying the saved configuration or

re-configuring the system.

10.3 Data Storage

The movement monitors utilize a flash card to store data while logging. This data can be downloaded by

using a docking station to dock the movement monitor. When the movement monitor is docked it finishes up

writing to the internal flash card and then releases it to the docking station. At this time the docking station

indicates to the PC that there is a new read only removable drive to be mounted. Using your file browser

you can navigate to the removable drive and copy the files off of it. The files are in a proprietary raw format

and need to be converted to either a HDF5 or CSV format that will provide data in calibrated SI units. This

conversion happens automatically if Motion Studiois used to import the data. Alternately, there are functions

in the SDK to do this conversion programmatically.

10.4 Cleaning

Cleaning the movement monitors case should be done by wiping the bottom of the case where it contacts

the skin with Rubbing alcohol or other cleaning wipe. If the entire case needs to be cleaned use only an ethyl

alcohol or isopropyl alcohol based wipe. Methyl alcohol should be avoided for cleaning the top since it will

58

10 Movement Monitor Reference

cause degradation of the plastic over time. The movement monitor should not be submerged in any liquids or

subjected to any high temperatures for cleaning. The straps on the monitor can be cleaned by wiping them

down with Rubbing alcohol. Alternatively the straps can be removed and washed separately using mild soap

and water.

10.5 Storage

Storage of the movement monitor should be in a dry static fee location. An anti-static bag or in the supplied

case is recommended. The movement monitor should also not be subjected to any large G forces to prevent

damage or changes to the calibration of the sensors in the monitor. It is recommended for the health of the

battery to to have at least a bulk charge during storage.

10.6 Drivers

Drivers are provided as part of the library distribution and Motion Studio. The drivers are installed automati-

cally as part of the Motion Studio installation process.

10.7 Firmware Updates

Updating the movement monitor firmware should be done using the Motion Studio software. This process is

detailed in Section 18 of this document.

10.8 Technical Specifications

• The accelerometer range is ±58.8 m/ s2 (6 g) (optionally ±19.6 m/ s2 (2 g)).

• Accelerometers have a typical noise density of 1.3 mm/ s2/
√

Hz.

• The X and Y axis gyros have a range of ±34.9 rad/s (2000 dps)

• The Z axis gyro has a range of ±26.8 rad/s (1500 dps)

• The X and Y axis gyros have a typical noise density of 0.81 mrad/ s/
√

Hz

• The Z axis gyro have a typical noise density of 2.2 mrad/ s/
√

Hz

• Magnetometers have a range of ±6 Gauss

• The magnetometers have a typical noise density is 160 nT/
√

Hz

• Positive X is pointing from the monitor toward the connector. Looking top down at the monitor with

positive X pointing away from you, positive Y is pointing left. Z is pointing up out of the top of the case.

Angular velocity sign is defined according to a right hand rule. A counterclockwise rotation about the Z

axis looking from the +Z direction is positive.

59

10 Movement Monitor Reference

10.9 LED Reference

10.9.1 Status Codes and LED Colors/Patterns

The LEDs on the access points and movement monitors provide important information about the operating

state of the hardware, including error statuses. The tables below list the LED patterns associated with these

states and can be useful in troubleshooting issues encountered with the hardware.

10.9.2 Movement Monitor LED Reference

Movement monitors contain a RGB LED capable of outputting a wide array of colors to the user to indicate

its current state. The following colors are used: white (�), red (�), yellow (�), green (�), cyan (�), blue (�),

magenta (�), and led off (). In the off state the LED will appear as a non illuminated white dot in the corner

of the monitor opposite the docking connector. All LED patterns are output on a repeating cycle which may

vary in period depending on the pattern. In all cases the last color listed will stay constant until the pattern

repeats. For example “� � ” will blink yellow twice and then stay off until the pattern repeats.

60

10 Movement Monitor Reference

State LED Pattern

Startup Mode (boot loader)

Startup wait (5 sec) v1.0, bootloader v1 �

Startup wait (5 sec) v1.1, bootloader v2 �

Failed to load firmware �

Boot loader mode �

Firmware Mode

Docked mode (pre-charging – very low battery) ��

Docked mode (bulk charging – low battery) ��(fast)

Docked mode (trickle charging – 80-100% charge) ��(slow)

Docked mode (full charge) �

Docked mode (battery error) ��

Docked mode (wait) �

Docked mode (error) � � �

Reset mode �

Transitioning into standby or powering off �

Hold mode �

Run mode (battery level 4, full) � � � �

Run mode (battery level 3) � � �

Run mode (battery level 2) � �

Run mode (battery level 1, low) �

Run mode (battery very low) � � �

Run mode (clock unset, battery level 4, full) � � � � �

Run mode (clock unset, battery level 3) � � � �

Run mode (clock unset, battery level 2) � � �

Run mode (clock unset, battery level 1, low) � �

Run mode (clock unset, battery very low) � � � �

Run mode (no sync-lock, battery level 4, full) � � � � �

Run mode (no sync-lock, battery level 3) � � � �

Run mode (no sync-lock, battery level 2) � � �

Run mode (no sync-lock, battery level 1, low) � �

Run mode (no sync-lock, battery very low) � � � �

Run mode (clock unset, no sync-lock, battery level 4, full) � � � � � �

Run mode (clock unset, no sync-lock, battery level 3) � � � � �

Run mode (clock unset, no sync-lock, battery level 2) � � � �

Run mode (clock unset, no sync-lock, battery level 1, low) � � �

Run mode (clock unset, no sync-lock, battery very low) � � � � �

61

10 Movement Monitor Reference

State LED Pattern

Error Modes

Error mode: default � �

Error mode: configuration � � �

Error mode: system � � � �

Error mode: data buffer � � � � �

Error mode: SD buffer � � � � � �

Error mode: SD I/O � � � � � � �

Card is full �

Wireless Streaming Debug LED Modes

Normal �

CPU limited ��

Sync bad ��

CPU limited, Sync bad ��

Missed sync > 0 �

Missed sync > 0, CPU limited ��

Missed sync > 0, Sync bad ��

Missed sync > 0, CPU limited, Sync bad ��

62

10 Movement Monitor Reference

10.10 Technical Drawing

.5
28

in
13

.4
0m

m

1.
90

6i
n

48
.4

0m
m

.1
18

in
3m

m.3
35

in
8.

50
m

m

1.
68

9i
n

42
.9

0m
m

.2
26

in
5.

75
m

m

.0
35

in
 T

HR
U

0.
89

m
m [1
.3

0m
m

]
M

2x
0.

4
Th

re
ad

0.

05
1i

n

1.
43

7i
n

36
.5

0m
m

.2
34

in
5.

95
m

m

1.
42

1i
n

36
.1

0m
m

.8
07

in
20

.5
0m

m

.2
11

in
5.

35
m

m

.0
98

in
2.

50
m

m

A
PD

M
 M

on
ito

r D
im

en
sio

ns
, V

er
sio

n
1.

1
C

O
M

M
EN

TS
:

60
61

 A
lu

m
in

um
 b

as
e

an
d

PC
/A

BS
 to

p
M

A
TE

RI
A

L:

SC
A

LE
: 2

:1

A
lu

m
in

um
: 0

.0
00

8"
 C

le
ar

 A
no

di
ze

TO
LE

RA
N

C
ES

: U
N

LE
SS

 O
TH

ER
W

IS
E

SP
EC

IF
IE

D
: .

XX
=

.0
1,

 .X
XX

=
.0

05
, A

N
G

UL
A

R
1.

FIN
IS

H:

63

11 Access Point Reference

11 Access Point Reference

11.1 Drivers

Drivers are provided as part of the SDK distribution and Motion Studio.

11.2 Firmware Updates

Updating the movement monitor firmware should be done using the Motion Studio software.

11.3 Mounting and Placement

The antennas of the access point are located directly behind the black plastic face of the access point. The

access point(s) should be aimed such that this face is in the approximate direction of the area where the

movement monitors will be used.

11.4 Using Multiple Access Points

Having multiple access points is useful when redundancy is needed or when recording from more than 6

Opals. To configure multiple access points, you must have them attached to your computer via USB at the

time of configuration. Additionally, the access points must be linked via RCA cable (a standard stereo cable).

The rest of the configuration is handled automatically.

11.4.1 Redundancy

In some recording environments, it may be difficult to always maintain line of site from your streaming Opals

to the access point. For example, you may have a bend in a hallway, or you may be operating in a large open

space where you are unlikely to receive a reflected signal if the Opal is pointed away from the access point.

In these scenarios, multiple access points can be used to provide better coverage. The streaming Opals will

communicate with whichever access point is providing the stronger signal.

11.4.2 Streaming from more than 6 Opals

Each access point can communicate with up to 6 Opals simultaneously. You can therefore stream from up to

12 Opals with 2 access points, or 24 Opals with 4 access points.

64

11 Access Point Reference

11.5 LED Reference

Access points contain a RGB LED capable of outputting a wide array of colors to the user to indicate its

current state. The following colors are used: white (�), red (�), yellow (�), green (�), cyan (�), blue (�),

magenta (�), and led off (). All LED patterns are output on a repeating cycle which may vary in period

depending on the pattern. In all cases the last color listed will stay constant until the pattern repeats. For

example “� � ” will blink yellow twice and then stay off until the pattern repeats.

State LED Pattern

Access point is powered on and is not receiving data from any monitors �

Access point is receiving data from all monitors and there is no excessive latency for

any of the monitors

�

Access point is receiving data from all monitors but there is excessive latency (>3s) in

one or more monitors. The latency is, however, decreasing (improving). This usually

indicates that one or more monitors was temporarily obstructed and is now catching

up.

��

Access point is receiving data from all monitors but there is excessive latency (>3s) in

one or more monitors which is increasing (getting worse). This usually indicates that

one or more monitors is obstructed and is having trouble transmitting its data.

��

Access point is receiving data from one or more, but not all, of the movement monitors �

Access point is receiving data from one or more monitors that it is not expecting to re-

ceive data (e.g. there is a monitor configured on another computer system streaming

data)

�� or ��

Access point is in low power USB suspend mode. �

Access point firmware error type 3, contact support � � �

Access point firmware error type 4, contact support � � � �

Access point firmware error type 5, contact support � � � � �

Access point SDRAM Memory error, contact support � � � � � � � �

11.6 Mechanical and Electrical Specifications

Weight: 1.2lbs, (550 grams)

Electrical: 290mA at 5V over USB connection

65

11 Access Point Reference

11.7 Technical Drawing

5.
22

7i
n

13
2.

76
m

m

4.
33

1i
n

11
0m

m R.
41

3i
n

10
.5

0m
m

8.
32

7i
n

21
1.

50
m

m

.1
25

in
3.

18
m

m

.9
17

in
23

.2
9m

m

2.
35

0i
n

59
.6

9m
m

3.
08

3i
n

78
.3

0m
m

.8
25

in
20

.9
6m

m

.4
07

in
10

.3
4m

m

4.
16

3i
n

10
5.

75
m

m

R.
18

8i
n

4.
76

m
m

1/
4-

20
 T

ap
pe

d
 H

ol
e

3.
30

6i
n

83
.9

8m
m

.4
67

in
11

.8
5m

m

1.
57

3i
n

39
.9

5m
m

1.
67

5i
n

42
.5

5m
m

A
PD

M
_A

cc
es

sP
oi

nt
FI

LE
 N

A
M

E:
C

O
M

M
EN

TS
:

60
61

 A
lu

m
in

um
 b

ac
k

&
 st

an
d

an
d

A
BS

 to
p

M
A

TE
RI

A
L:

SC
A

LE
: 1

:2

FIN
IS

H:

TO
LE

RA
N

C
ES

: U
N

LE
SS

 O
TH

ER
W

IS
E

SP
EC

IF
IE

D
: .

XX
=

.0
1,

 .X
XX

=
.0

05
, A

N
G

UL
A

R
1.

A
lu

m
in

um
: 0

.0
00

8"
 C

le
ar

 A
no

di
ze

66

12 Docking Station Reference

12 Docking Station Reference

12.1 Drivers

Drivers are provided as part of the SDK distribution and Motion Studio.

12.2 Power

• If running a single docking station, it can be powered from:

– a USB cable plugged into a dedicated USB port on your computer

– a USB cable plugged into a a powered USB hub

– a USB cable plugged into a wall adapter (charging only)

– the external AC adapter (charging only)

• If running a chain of 2 or more docking stations:

– For data transfer, both USB and external AC power are required. If a power-related error occurs,

then the docking station will blink yellow until external or power is plugged in.

– if only charging is required, the external AC power must be used

12.3 Mechanical and Electrical Specifications

Weight: 0.2 lbs, (90 grams)

Electrical: 500mA at 5V over USB connection, or 500mA per dock when a chain is supplied by external

power.

67

12 Docking Station Reference

12.4 LED Reference

Docking stations contain a RGB LED capable of outputting a wide array of colors to the user to indicate its

current state. The following colors are used: white (�), red (�), yellow (�), green (�), cyan (�), blue (�),

magenta (�), and led off (). All LED patterns are output on a repeating cycle which may vary in period

depending on the pattern. In all cases the last color listed will stay constant until the pattern repeats. For

example “� � ” will blink yellow twice and then stay off until the pattern repeats.

State LED Pattern

OK �

Powered off, USB suspended, or booloader pause �

OK, but USB not enumerated �

Power problem. Need to plug in external power or USB

power.

�

Docking in progress �

Docked, but SD unavailable to host �

SD Card mounting in progress � �

SD Card mounted and avaliable to host �

SD card read-access in progress �

USB error �

Error �

Error: SD card mounting error � �

Error: in-dock USB hub problem � � �

Firmware error type 4, contact support � � � �

Firmware error type 5, contact support � � � � �

Firmware error type 6, contact support � � � � � �

Bootloader mode �

Updating firmware �

Hardware Error - DA � � � � � �

Hardware Error - GA � � � � � �

Hardware Error - PA � � � � � �

Hardware Error - UA � � � � � �

68

12 Docking Station Reference

12.5 Technical Drawing

1.

63
4i

n
41

.5
1m

m

.1

80
in

4.
57

m
m

.5

00
in

12
.7

0m
m

1.

95
3i

n
49

.6
0m

m

.2

93
in

7.
45

m
m

.2

93
in

7.
45

m
m

1.

48
0i

n
37

.6
0m

m

1.

03
3i

n
26

.2
5m

m

.3

64
in

9.
25

m
m

2.

06
7i

n
52

.5
0m

m

2.

53
9i

n
64

.5
0m

m

A
PD

M
_D

oc
k

FI
LE

 N
A

M
E:

C
O

M
M

EN
TS

:

60
61

 A
lu

m
in

um
 p

la
te

 a
nd

 A
BS

 to
p

&
 b

ot
to

m
M

A
TE

RI
A

L:

SC
A

LE
: 1

:1
TO

LE
RA

N
C

ES
: U

N
LE

SS
 O

TH
ER

W
IS

E
SP

EC
IF

IE
D

: .
XX

=
.0

1,
 .X

XX
=

.0
05

, A
N

G
UL

A
R

1.

A
lu

m
in

um
: 0

.0
00

8"
 C

le
ar

 A
no

di
ze

FIN
IS

H:

69

13 Technical Support

13 Technical Support
Please contact us at:

web: support.apdm.com

email: support@apdm.com

70

	Welcome
	System Overview
	Movement Monitors
	The Opal
	The Emerald
	The Sapphire

	Docking Station
	Access Point
	Recording Modes
	Robust Synchronized Streaming
	Rapid Synchronized Streaming
	Synchronized Logging
	Low Power Logging

	Motion Studio
	APDM Software Development Kit

	Downloading the SDK
	SDK Directory Structure

	Software Tools and Libraries
	Developer Skills
	Programming Libraries
	Development Environments

	C API
	Documentation
	Using the Host Libraries
	Headers
	System Context
	Docking Station Handle
	Configuration of Movement Monitors on a Docking Station
	Access Point Handle
	Configuration of Synchronized Wireless Streaming & Logging Mode
	Variable Output Rates
	Wireless Channel Selection
	Configuration of Rapid Streaming Mode
	Rapid Streaming with Correlation
	Rapid Streaming without Correlation
	Persisting Configurations to Disk
	Configuration of Synchronized Logging Mode
	Configuration of Low Power Logging Mode
	Storing streaming data in HDF5 or CSV format
	Converting .apdm files to HDF5 or CSV
	Return Codes
	Logging
	Threading

	Wireless Buffering and Data Correlation
	Max Delay / Max Latency

	Real-time Systems
	Timing and Protocol Properties
	DLL's, DYLIB's and SO's
	Java
	Other Systems
	External Sync

	External Synchronization and I/O
	Configuration
	Input Synchronization
	Input Trigger Shape
	Input Trigger Level
	Input Trigger
	Sample Selection with External Input Trigger Events
	Annotation of Externally Triggered Recordings

	Output Synchronization
	Output Trigger Shape
	Output Trigger Level
	Output Trigger

	Isolated External Interface Details
	RCA Inter-AP Sync Connector
	6 Pin Digital Input/Output Connector
	External Sync Box
	4 Pin Analog Input/Output Connector
	Schematic

	Programming Examples
	Example Code Provided with the SDK
	Simple Configuration and Streaming Example
	High Level Psuedocode
	C Programming Example
	Java Programming Example
	Matlab Programming Examples

	Working with HDF5 Files
	HDFView
	Data Organization
	File Structure
	Versions 3 and 4
	Version 3
	Version 2
	Version 1

	Working with HDF 5 in MATLAB
	Examples
	Notes

	Calibration
	File Format
	Data Format
	Calibration version 5

	Firmware Updates
	Automatic Firmware Updates
	Manual Firmware Updates
	Flash Default Firmware
	Flash Alternate Firmware
	Force Update

	Movement Monitor Reference
	Charging
	Powering Down
	Data Storage
	Cleaning
	Storage
	Drivers
	Firmware Updates
	Technical Specifications
	LED Reference
	Status Codes and LED Colors/Patterns
	Movement Monitor LED Reference

	Technical Drawing

	Access Point Reference
	Drivers
	Firmware Updates
	Mounting and Placement
	Using Multiple Access Points
	Redundancy
	Streaming from more than 6 Opals

	LED Reference
	Mechanical and Electrical Specifications
	Technical Drawing

	Docking Station Reference
	Drivers
	Power
	Mechanical and Electrical Specifications
	LED Reference
	Technical Drawing

	Technical Support

